期刊文献+

自适应过滤预测模型的深度学习探究

Deep Learning Exploration of Adaptive Filtering Prediction Model
下载PDF
导出
摘要 随着信息量的激增,深度学习已成为深化知识信息处理和提高学习效率的关键途径。本文基于深度学习理论,探讨了教育学领域中深度学习的内涵,并针对自适应过滤预测法设计了深度学习的实施框架。将这一教学模式应用于自适应过滤预测法的实践教学中,旨在通过深度学习技术提升学生的学习成效和满意度,进而为学生实践技能的提高、创新能力的培养以及终身学习能力的构建打下坚实的基础。With the surge of information, deep learning has become a key way to deepen knowledge and information processing and improve learning efficiency. Based on the theory of deep learning, this paper discusses the connotation of deep learning in the field of pedagogy, and designs the implementation framework of deep learning for the adaptive filter prediction method. By applying this teaching mode to the practical teaching of adaptive filtering and prediction method, the purpose is to improve students’ learning effectiveness and satisfaction through deep learning technology, and then lay a solid foundation for the improvement of students’ practical skills, the cultivation of innovation ability and the construction of lifelong learning ability.
作者 刘媛华
出处 《理论数学》 2024年第10期248-254,共7页 Pure Mathematics
  • 相关文献

参考文献5

二级参考文献74

  • 1高凌飚,吴维宁.开放性试题如何评分?——介绍两种质性评分方法[J].学科教育,2004(8):1-6. 被引量:67
  • 2何玲,黎加厚.促进学生深度学习[J].计算机教与学.现代教学,2005(5):29-30. 被引量:1346
  • 3BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36.
  • 4BENGIO Y. Leaming deep architectures for AI[ J]. Foundations and Trends in Machine Learning ,2009,2 ( 1 ) : 1-127.
  • 5HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets [ J ]. Neural Computation ,2006,18 (7) : 1527-1554.
  • 6BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Proc of the 12th Annual Conference on Neural Information Processing System. 2006:153-160.
  • 7LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning ap- plied to document recognition[ J]. Proceedings of the iEEE, 1998, 86( 11 ) :2278-2324.
  • 8VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[ C ]//Proc of the 25th International Conference on Machine Learning. New York: ACM Press ,2008 : 1096-1103.
  • 9VINCENT P, LAROCHELLE H, LAJOIE I, et aL Stacked denoising autoencoders:learning useftd representations in a deep network with a local denoising criterion [ J ]. Journal of Machine Learning Re- search ,2010,11 ( 12 ) :3371-3408.
  • 10YU Dong, DENG Li. Deep convex net: a scalable architecture for speech pattern classification [ C]//Proc of the 12th Annual Confe-rence of International Speech Comunication Association. 2011 : 2285- 2288.

共引文献2024

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部