期刊文献+

半变系数再生散度混合效应模型的影响分析

Influence Analysis of Semivarying Coefficient Reproductive Dispersion Mixed Models
下载PDF
导出
摘要 本文把随机效应看作缺失数据并利用P-样条拟合非参数部分,应用Monte Carlo EM 加速算法得到半变系数再生散度混合效应模型的未知参数的估计,同时利用Q函数,得到了模型的广义Cook距离。此外,本文还研究了三种不同扰动情形的局部影响分析,得到了相应的影响矩阵。最后,通过一个实际例子验证了所提出的诊断统计量的有效性。 This paper proposes several case-deletion as well as local influence measures for assessing the influence of an observation for semivarying coefficient reproductive dispersion mixed models. The essential idea is to treat the latent random effects in the model as missing data and estimate unknown parameters by acceleration of Monte Carlo EM algorithm. Onthe basis of the Q-function which is associated with the conditional expectation of the complete-data log-likelihood, we generate generalized Cook Distance. Moreover, three different perturbation schemes are discussed. Finally,one real illustrative example is presented to prove the methodology.
出处 《统计学与应用》 2012年第2期37-43,共7页 Statistical and Application
  • 相关文献

参考文献3

二级参考文献12

  • 1GUI HengjianDepartment of Mathematics, Beijing Normal University, Beijing 100875, China.On asymptotics of t-type regression estimation in multiple linear model[J].Science China Mathematics,2004,47(4):628-639. 被引量:7
  • 2崔恒建.线性模型和线性EV模型中的T-型回归估计和EM算法(英文)[J].应用概率统计,2006,22(3):321-328. 被引量:10
  • 3张浩,朱仲义.半参数广义线性混合效应模型的影响分析[J].应用数学学报,2007,30(4):743-756. 被引量:5
  • 4Booth, J.G. and Hobert, J.P., Maximizing generalized linear mixed model likehoods with an automated Monte Carlo EM algotithm, Journal of the Royal Statistical Society, Ser. B, 61(1999), 265-285.
  • 5Dempster, A.P., Laird, N.M. and Rubin, D.B., Maximum likelihood from incomplete data via the EM algorithm (with discussion), Journal of the Royal Statistical Society, Ser. B, 39(1977), 1-38.
  • 6Geweke, J., Bayesian inference in econometric models using Monte Carlo integration, Econometrica, 57(1989), 1317-1339.
  • 7Little, R.J.A. and Rubin, D.B., Statistical Analysis with Missing Data, New York: Wiley, 1987.
  • 8Louis T.A. Finding observed information using the EM algorithm, Journal of the Royal Statistical Society, Set. B, 44(1982), 98-130.
  • 9McLachlan, G.J. and Krishnan, T., The EM Algorithm and Extensions, New York: Wiley, 1996.
  • 10Tanner, M.A., Tools for Statistical Inference: Methods for the Exploration of Posterior Distributions and Likelihood Functions, New York: Springer-Verlag, 1993.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部