期刊文献+

指数分布利息力下年金的期望和方差

The Expectation and Variance of Annuity under Exponential Distributed Interest Force
下载PDF
导出
摘要 年金是指在一定期限内的系列现金流量。年金的现值与利率密切相关。在传统的精算理论中,在年金的计算中,常常假定利息率为已知的非随机变量,这主要是数学上处理的方便而假设的。然而,实际中的利息率与投资收益、汇率、金融市场等多种因素有关,假定利息率是随机变量更加合理。本文在利息力指数分布的模型子下,研究了各种固定年金和生存年金的期望和方差。 An annuity is a series of cash flow within a certain period of time. The present value of the annuity is closely related to interest rates. In the traditional actuarial theory, the interest rate is usually assumed to be fixed and known in advance in the calculation of the annuity. This assumption basically is mathematically treated easily and hypothetical. However, the actual interest rate is dependent on investment income, exchange rate, financial market and other factors. Therefore, it is more reasonable to assume that the interest rate is a random variable. In this paper, the interest force is assumed to be exponentially distributed, and correspondingly, the expectation and variance of the various fixed annuities and life annuities are hence derived.
出处 《统计学与应用》 2013年第4期136-140,共5页 Statistical and Application
基金 国家自然科学基金(71001046,71361015) 江西省教育厅基金(GJJ13217) 中国博士后科学基金(2013M540534) 江西省博士后择优项目。
  • 相关文献

参考文献5

二级参考文献12

  • 1何文炯,蒋庆荣.随机利率下的增额寿险[J].高校应用数学学报(A辑),1998,13(2):145-152. 被引量:36
  • 2S.G.凯利森.尚汉冀译.利息理论[M].上海:上海科学技术出版社,1995..
  • 3余跃年(译),精算数学,1995年
  • 4尚汉冀(译),利息理论,1995年
  • 5赵达纲,应用随机过程,1993年
  • 6华似韵,随机过程,1988年
  • 7Aichison, J & Brown, J. A. C. , The lognormal distribution, Cambridge University Press, 1963, P.176.
  • 8Dufresne, D. , The distribution of a perpetuity with application to risk theory and pension funding,Scand Actuarial J. , 1990, 39-79.
  • 9Parker, G. , Two stochastic approaches for discounting actuarial function, Astin Bulletin, 26:1(1996),167-181.
  • 10Parker, G. , Stochastic analysis of the interaction between investment and insurance risks, North American Actuarial Journal, 12(1997), 55-84.

共引文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部