期刊文献+

基于SICA罚的变量选择及应用

Variable Selection and Application Based on SICA Penalty
下载PDF
导出
摘要 高维数据的变量选择一直是统计学领域的热门研究方向。本文研究SICA罚估计在线性模型变量选择中的应用,结合LLA (Local linear approximation)和坐标下降算法给出一种有效的迭代算法,并提出BIC准则选择正则化参数。实际数据的分析表明,与其他变量选择方法相比较,SICA方法在参数估计精度和变量选择方面具有较好的表现。 Variable selection of high-dimensional data has always been a hot research direction in the field of statistics. In this paper, we study the application of SICA penalty estimation in variable selection of linear model, give an effective iterative algorithm combined with LLA (local linear approximation) and coordinate descent algorithm, and propose BIC criterion to select regularization parameters. The analysis of actual data shows that SICA method has better performance in parameter estimation accuracy and variable selection compared with other variable selection methods.
机构地区 宁波工程学院
出处 《统计学与应用》 2021年第1期145-150,共6页 Statistical and Application
  • 相关文献

参考文献5

二级参考文献71

  • 1王大荣,张忠占.联合广义线性模型中的变量选择[J].统计研究,2007,24(4):37-40. 被引量:2
  • 2Fan J, Li R. Statistical challenges with high dimensionality: Feature selection in knowledge discovery [A]. In: Sanz-Sole M, Soria J, Varona J L, et al, eds. Proceedings of the International Congress of Mathematicians [C]. Zurich: European Mathematical Society, 2006, 3: 595-622.
  • 3Claeskens G, Hjort N L. Model Selection and Model Averaging [M]. Cambridge University Press, 2008.
  • 4Hocking R R. The analysis and selection of variables in linear regression [J]. Biometrics, 1976, 32: 1-49.
  • 5Guyon I, Elisseeff A. An introduction to variable and feature selection [J]. Journal of Machine Learn- ing Research, 2003, 3: 1157-1182.
  • 6Li X, Xu R. High-Dimensional Data Analysis in Cancer Research [M]. Springer, 2009.
  • 7Hesterberg T, Choi N H, Meier L, Fraley C. Least angle and 11 penalized regression: A review [Jl. Statistics Surveys, 2008, 2: 61-93.
  • 8Fan J, Lv J. A selective overview of variable selection in high dimensional feature space [J]. Statistica Sinica, 2010, 20: 101-148.
  • 9Bertin K, Lecue G. Selection of variables and dimension reduction in high-dimensional non-parametric regression [J]. Electronic Journal of Statistics, 2008, 2: 1224-1241.
  • 10Li R, Liang H. Variable selection in semiparametric regression modeling [J]. Annals of Statistics, 2008, 36: 261-286.

共引文献125

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部