期刊文献+

高维数据在Cox回归模型中的自变量选择——基于Elastic Net方法的维数约简

Independent Variable Selection of High-Dimensional Data in Cox Regression Model—Dimension Reduction Based on Elastic Net
下载PDF
导出
摘要 在高维数据分析中,LASSO维数约简方法占有很重要的位置。针对数据愈发繁杂,LASSO回归不再适应一些具有较高相关性的高维数据分析,由此产生了Elastic Net和其他相关的一些高维数据拓展分析方法。Elastic Net是在LASSO的思想方法基础上结合非凸罚函数和岭回归方法得到的,Adaptive Elastic Net等是在Elastic Net的思想方法上,通过数据特征的不同改进惩罚函数,缓和稀疏性和过拟合的问题。文章对Elastic Net、Adaptive Elastic Net、Weight Elastic Net进行了介绍并且通过实际例子做了简单的比较,最终得到了较好的维数约简方法。 In high-dimensional data analysis, LASSO occupies a very important position. For data becoming more and more complicated, LASSO regression is not very suitable for some relevant high-dimen- sional data analysis. Some of the extended analysis methods are produced, such as adaptive Elastic Net and other high-dimensional data analysis methods. Elastic Net is obtained by combining non- convex penalty and ridge regression methods on the basis of LASSO’s method of thinking. Adaptive Elastic Net, etc., based on Elastic Net’s method of thinking, uses different data characteristics to improve the penalty function, and continuously corrects the sparsity and overfitting problem. The article mainly introduces Elastic Net, Adaptive Elastic Net, Weight Elastic Net and makes a simple comparison of several methods through practical examples.
出处 《统计学与应用》 2021年第2期183-192,共10页 Statistical and Application
  • 相关文献

参考文献4

二级参考文献12

  • 1Tibshirani RJ.Regression shrinkage and selection via the lasso.Journal of the Royal Statistical Society,1996,58:267-288.
  • 2Tibshirani RJ.The Lasso method for variable selection in the Cox model.Statistics in Medicine,1997:385-395.
  • 3Gui J,Li H.Penalized Cox regression analysis in the high dimensional and low-sample size settings with applications to microarray gene expression data.Bioinformatics,2005:3001-3008.
  • 4Verweij PJ.Cross-validation in survival analysis.Statistics in Medicine,1993,12:2305-2314.
  • 5Van HC,Bruinsma T,Van't Veer LJ,et al.Cross-validated Cox regression on microarray gene expression data.Statistics in Medicine,2006,25:3201-3216.
  • 6Segal MR,Dahlquist KD,Conklin BR.Regression approaches for microarray data analysis.Journal of Computational Biology,2003,10:961-980.
  • 7van de Vijver MJ,He YD,van't Veer LJ,et al.A gene-expression signature as a predictor of survival in breast cancer.N Engl J Med,2002,347:1999-2009.
  • 8Tim H,Nam HC,Lukas M,et al.Least angle and1penalized regression.Statistics Surveys,2008:61-93.
  • 9Ewout W.Steyerberg.Clinical Prediction Models:A Practical Ap-proach to Development,Validation,and Updating.Springer,2009,317-318.
  • 10郜艳晖,何大卫.COX模型的残差分析和影响诊断[J].现代预防医学,2000,27(1):48-50. 被引量:3

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部