期刊文献+

基于居民感知视角的城市大脑建设方向分析——以杭州市为例

Direction Analysis of Urban Brain Construction Based on Residents’ Perception Perspective—Taking Hangzhou as an Example
下载PDF
导出
摘要 本文以杭州市居民为调查对象,旨在了解杭州城市大脑建设现状及居民满意度,并根据调查结果提出合理建议。采用分层抽样与偶遇抽样相结合进行问卷调查,通过构建随机森林模型分析居民满意度的影响因子。研究表明,不同年龄层群体对城市大脑了解存在差异性,卫生健康和便民服务模块使用人数最多,特定人群对特定模块由对应需求,总体满意度受便民服务、交通出行等模块的影响较大。因此,建议主管部门应制定科学合理规划,形成有力技术支撑,基层社区应加强对内宣传力度,建设完善社区微脑,居民应配合城市大脑建设,积极发表反馈意见。 This article takes Hangzhou residents as the survey object, aiming to understand the current situation of Hangzhou urban brain construction and residents’ satisfaction, and put forward reasonable suggestions according to the survey results. Stratified sampling and encounter sampling were used to conduct a questionnaire survey, and a random forest model was constructed to analyze the influencing factors of residents’ satisfaction. Studies show that different age groups have different understanding of urban brain, and the number of users of health and convenience service modules is the largest. Specific groups have corresponding needs for specific modules, and the overall satisfaction is greatly affected by convenience services, transportation and other modules. Therefore, it is suggested that the competent departments should make scientific and reasonable planning to form strong technical support, grassroots communities should strengthen internal publicity, build and improve community microbrain, and residents should cooperate with the urban brain construction and actively express feedback.
出处 《统计学与应用》 2022年第5期1151-1158,共8页 Statistical and Application
  • 相关文献

二级参考文献70

  • 1张明斗,刘奕.基于大数据治理的城市治理现代化体系研究[J].电子政务,2020,0(3):91-99. 被引量:13
  • 2华先胜,黄建强,沈旭,付志航,赵一儒,黄镇,王潇宁.城市大脑:云边协同城市视觉计算[J].人工智能,2019,0(5):77-91. 被引量:17
  • 3张华伟,王明文,甘丽新.基于随机森林的文本分类模型研究[J].山东大学学报(理学版),2006,41(3):5-9. 被引量:59
  • 4Quinlan J R.C4.5:Programs for Machine Learning,1993.
  • 5Archer KJ, Kirnes RV, 2008. Empirical characterization of random forest variable importance measures. Comput. Stat. Data Anal. ,52(4):2249-2260.
  • 6Biau G, 2012. Analysis of a random forests model. J. Mach. Learn. Res. , 13: 1063 -1095.
  • 7Breiman L, 2001a. Random forests. Mach. Learn. , 45:5 - 32.
  • 8Breiman L, 2001b. Statistical modeling: The two cultures. Stat. Sci., 16:199-215.
  • 9Breiman L, Friedman JH, O lshen RA, Stone CJ, 1984.Classification and Regression Trees. Chapman and Hall. 1 -359.
  • 10Cutler DR, Edwards TC, Jr., Beard KH, Cutler A, Hess KT, 2007. Random forests for classification in ecology. Ecology, 88 (11) :2783 - 2792.

共引文献570

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部