期刊文献+

分块稀疏表示的人脸识别研究

Face Recognition Research Based on Sparse Representation of Blocks
下载PDF
导出
摘要 针对人脸识别中人脸被局部遮挡对识别效果带来的严重影响,提出一种对遮挡具有鲁棒性的分块稀疏表示分类的人脸识别算法。稀疏表示分类算法利用高维数据分布的稀疏性进行建模,能够很好地解决图像高维处理问题,有效地避免维数灾难。通过对该算法进行改进,提出一种分块稀疏表示的人脸识别算法。首先对人脸图像进行分割,独立地对每个子块进行稀疏表示分类,再通过所有子块的分类结果进行联合判别。改进后的算法避免了特征提取过程中所造成的图像信息丢失,也避免了人脸部分信息丢失对整体识别结果的影响。通过在AR和Yale人脸数据库上进行仿真实验,可以得出该改进算法能显著提高遮挡人脸图像的识别率,并且对光照变化也具有一定的鲁棒性。 In order to reduce the sensitivity of the face recognition algorithm to occlusion, a robust occlusion block sparse representation classification face recognition algorithm is proposed. The sparse representation algorithm uses the sparsity of high-dimensional data distribution to perform modeling, which can deal with high-dimensional image and effectively avoid dimension disaster. Block thinking is introduced in this algorithm. First of all, face image is divided into blocks which are independently sparse representation classification, and then a joint determination by all classification sub-blocks. The improved algorithm not only avoids the image feature extraction process information loss caused, but also avoids the loss of face parts information on the overall recognition results. Through simulation experiments on AR and Yale face database, it can be drawn that the improved algorithm can significantly improve the recognition rate of occluded face image, and also have some certain robustness under variable illumination.
出处 《软件工程与应用》 2016年第5期277-284,共8页 Software Engineering and Applications
基金 河南省基础与前沿项目(No.162300410196)。
  • 相关文献

参考文献4

二级参考文献53

  • 1杜成,苏光大.用于人脸识别的正面人脸图像眼镜摘除[J].清华大学学报(自然科学版),2005,45(7):928-930. 被引量:11
  • 2Brunell R, Poggio T. Feature Recognition: Features Versus Templates[J ]. IEEE Trans Pattern Analysis and Machine Intelligence, 1993,15(10) : 1042-1052.
  • 3Steve Lawrence, Lee Giles C, Ah Chung Tsoi, et al. Face Recognition: A Convolutional Neural-network Approach[J]. IEEE Trans on Neural Networks, 1997,8( 1 ) :98-113.
  • 4Wiskott L, Fellous J M. Face Recognition by Elastic Bunch Graph Matching[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997,9(7) : 775-779.
  • 5Turk M, Pentland A. Eigenfaces for Recognition[J ]. Journal of Cognitive Neuroscience, 1991,3(1):71-86.
  • 6Yang J. From Image Vector to Matrix: A Straightforward Image Projection Technique-IMPCA vs PCA[J ]. Pattern Recognition, 2002(35) : 1997-1999.
  • 7Yang J, Zhang D, Frangi A F, et al. Two-dimensional PCA: A New Approach to Appearance-based Face Representation and Recognition [ J ]. IEEE Trans on Pat tern Analysis and Machine Intelligence, 2004,26 ( 1 ) : 131-137.
  • 8Wang L, Wang X, Zhang X, et al. The Equivalence of Two-dimensional PCA to Line-based PCA[J]. Pattern Recognition Letters, 2005 (26) : 57-60.
  • 9Saito Y, Kenmochi Y, Kotani K. Estimation of eyeglassless facial images using principal component analysis [C]//Proc of IEEE ICIP'99. Piscataway, NJ: IEEE, 1999:197-201.
  • 10Wu C, Liu C, Shum H Y, et al. Automatic eyeglasses removal from face images [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(3): 322-336.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部