期刊文献+

室内环境舒适度感知系统研究及实现

Research on the Comfort Evaluation for Indoor Environment
下载PDF
导出
摘要 现代人类90%的生命周期在室内度过,因此,室内环境质量不仅影响到室内滞留人员的工作效率,也直接与其身体健康具有很高相关性。本文针对室内热舒适度评价机制不足的问题,依据FAHP(Fuzzy Analytic Hierarchy Process)热舒适度评价模型设计一种基于51单片机和蓝牙无线通信协议的室内环境热舒适度感知系统。系统用单片机、温湿度传感器、光强传感器采集环境参数并采用FAHP算法得到室内环境热舒适度测量值与标准舒适值的权重比,比值为1时表明当前环境为最舒适状态。系统包括软件系统和硬件系统。通过无线蓝牙模块将数据发送到电脑上的虚拟服务器以实现数据在个人网页上显示的功能。实验结果,系统能够将室内环境热舒适度量化,并给出舒适度排序结果。结果可用于室内建筑热环境评估,也可以为建筑节能提供理论依据。 It is reported that people spend 90% of their life indoors. Therefore, the indoor environment has great impact on both the working efficiency as well as health on the occupants. Based on the fuzzy AHP thermal comfort evaluation model, an indoor environment thermal comfort evaluation system based on 51 single chip microcomputer and Bluetooth wireless communication protocol is proposed in this paper to deal with the problem of lack of numeric evaluation in the indoor thermal comfort. The overall design of the system is described, including hardware design and software design. The system collects the environment parameters from the 51-chip through the sensors and uses the fuzzy AHP algorithm to process the data, and then sends the processed data to the virtual server on the computer through the wireless Bluetooth module to realize the function of the data displayed on the personal page. The difference between the comfort indexes measured in the site and the benchmark indicates the comfortable level of the sampling environment, the smaller the better. The most comfortable environment is achieved when the difference reaches 0. Experiment results show that the system can effectively detect the parameters of the indoor environment thermal comfort, and make a quantitative display of the comfort via the fuzzy AHP algorithm. The system has some practicality in the construction of intelligent, air conditioning and other fields.
出处 《软件工程与应用》 2017年第4期68-78,共11页 Software Engineering and Applications
基金 国家自然科学基金项目(61602334,61502329,61401297) 住房与城乡建设部科学技术项目(2015-K1-047) 江苏省自然科学基金项目(BK20140283)资助。
  • 相关文献

参考文献4

二级参考文献33

  • 1黄虹,李顺诚,曹军骥,邹长伟,陈新庚,范绍佳.基于PM_(2.5)浓度的室内通风调控[J].环境与可持续发展,2007,32(2):51-53. 被引量:4
  • 2Furber S. ARM System-on-Chip Architecture[ M]. 2nd ed [ s. 1. ] zAddison-Wesley Press ,2000.
  • 3Doolitfle L, Nelson J. Boa Installation and Usage [ EB/OL] 2006. http ://www. boa. org/documentation/.
  • 4蓝箭,徐亮亮.基于CGI技术远程网络控制方法的研究[J].仪表技术,2011,23(1):18-20.
  • 5Tanenbaum A S. Computer Networks [ M ]. 4th ed. America : Pearson Education ,2004.
  • 6ASHRAE.Thermal Environmental Conditions for Human Occupancy. ASHRAE Standard 55-1992 . 1992
  • 7中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局.GB/T50378-2014绿色建筑评价标准[S].北京:中国建筑工业出版社,2015.
  • 8ALFANO F R D, OLESEN B W, PALELLA B I, et al. Thermal comfort: Design and assessment for energy saving[J]. Energy and Buildings, 2014, 81 : 326 - 336.
  • 9FANGER P O. Thermal comfort: Analysis and applications in environmental engineering [M]. New York, US : McGraw-Hill , 1970.
  • 10HAN H, LEE J, KIM J, et al. Thermal comfort control based on a simplified predicted mean vote index [J]. Energy Procedia, 2014, 61:970 -974.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部