期刊文献+

基于卷积神经网络的高楼外墙裂缝检测系统 被引量:1

Convolution Neural Network-Based System for Detecting Cracks on Exterior Wall
下载PDF
导出
摘要 基于卷积神经网络的数学模型,通过无人机拍摄外墙图像建立数据库,本文结合软硬件建立了一种外墙及饰面材料的裂缝检测系统,能有效地识别外墙裂缝的严重、一般或轻微三种毁坏程度,且有效识别率分别为86%,91%,97%。 Based on the mathematical model of convolutional neural network, the database is built by taking images of external walls by unmanned aerial vehicle;a crack detection system for external wall and its facing material is established by software and hardware. The system can effectively identify the severity, general or slight damage degree of external wall cracks, and the effective identification rates are 86%, 91% and 97% respectively.
出处 《软件工程与应用》 2018年第6期273-282,共10页 Software Engineering and Applications
  • 相关文献

同被引文献11

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部