期刊文献+

基于机器学习的雷达回波与降雨分析 被引量:3

Relationship Analysis of Radar Echo and Rainfall Based on Machine Learning
下载PDF
导出
摘要 多普勒天气雷达产生的雷达回波数据是降雨分析及预测的重要依据,针对如何有效利用雷达回波进行降雨等级分析问题,本文研究了一种基于XGBoost集成学习算法的雷达回波与降雨关系分析模型。本文使用辽宁省气象台提供的历年雷达和降雨气象观测数据,经过数据解码、清洗、匹配后,使用经网格搜索算法优化后的XGBoost方法训练,建立多层雷达回波数据与降雨等级的分类关系。最后通过实验结果表明,基于XGBoost方法得到的结果更接近实际,能够较好地反映云团雷达回波和降雨的关系。 Radar echo data generated by Doppler weather radar is an important basis for rainfall analysis and prediction. Aiming at the problem of how to make effective use of radar echo for rainfall grade analysis, this paper studies an analysis model of the relationship between radar echo and rainfall based on XGBoost ensemble learning algorithm. In this paper, we use the radar and rainfall mete-orological observation data provided by Liaoning Meteorological Station over the years. After data decoding, cleaning and matching, we use XGBoost method optimized by grid search algorithm to establish the classification relationship between multi-layer radar echo data and rainfall level. Fi-nally, the experimental results show that the results based on XGBoost method are closer to reality and can better reflect the relationship between cloud radar echo and rainfall.
出处 《软件工程与应用》 2021年第1期35-43,共9页 Software Engineering and Applications
  • 相关文献

参考文献2

二级参考文献38

  • 1李兵,韩睿,何怡刚,张晓艺,侯金波.改进随机森林算法在电机轴承故障诊断中的应用[J].中国电机工程学报,2020,40(4):1310-1319. 被引量:80
  • 2陈振宇,刘金波,李晨,季晓慧,李大鹏,黄运豪,狄方春,高兴宇,徐立中.基于LSTM与XGBoost组合模型的超短期电力负荷预测[J].电网技术,2020,44(2):614-620. 被引量:229
  • 3陈秋萍,余建华,杨林增,李建通,林文卿,赖荣钦,祖基煊.闽中北前汛期多普勒雷达定量估测降水分析[J].气象,2006,32(4):56-61. 被引量:11
  • 4胡胜,伍志方,刘运策,冯民学,顾松山.新一代多普勒天气雷达广东省区域拼图初探[J].气象科学,2006,26(1):74-80. 被引量:43
  • 5BRYAN C Young, ALLEN A Bradley, WITOLD F krajewski, evaluating NEXRAD multisensor precipitation estimates for operational hydrologic forecasting[J]. J Hydrometeor, 2000, 1(3): 241-253.
  • 6CALHEIROS RV, ZAWADZKI T J. Reflectivity rain-rate relationships for radar hydrology in Brazil[J]. Climate Apple Meteor, 1987, 26(1): 118 -132.
  • 7ATLAS D, ROSENFELD D, WOLFF D B. A climatologically tuned rain rate relations and links to area-time integrals[J]. Journal of Applied Meteorology, 1990, 29:1 120-1 135.
  • 8ZHANG J, HOWARD K, XU X. A warm season radar QPE algorithm using adaptive Z-R relationships[C]. Proc World Environmental and Water Resources Congress 2008, Honolulu, HI, USA, Amer Soc Civil Engineers, CD-ROM, 420.pdf.
  • 9GERSTNERA E -M, HEINEMANN G. Real-time areal precipitation determination from radar by means of statistical objective analysis[J]. Journal of Hydrology, 2008, 352: 296-308.
  • 10LIP W, EDWIN S T Lai. Short-range quantitative precipitation forecasting in Hong Kong[J]. Journal of Hydrology, 2004, 288: 189-209.

共引文献80

同被引文献30

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部