期刊文献+

基于PSO-SVM的风电整流器故障诊断

Fault Diagnosis of Wind Power Rectifier Based on PSO-SVM
下载PDF
导出
摘要 针对风力发电系统中整流器故障诊断的问题,以三相全控整流电路为例,提出粒子群优化支持向量机(particle swarm optimization-support vector machine, PSO-SVM)的分类算法。首先用MATLAB进行仿真得到故障信号,再使用快速傅立叶变换(FFT)预处理故障信号,主成分分析(PCA)提取其中主要频域特征,以及采集一周期内的时域特征,最后使用SVM和PSO-SVM分别对提取的时域、频域以及结合时频域的特征进行训练和测试。实验结果表明,采用PSO-SVM的方法对时域、频域、时频域特征的故障诊断率都比SVM要高,诊断时间也得到了大大提升,并且选用时频域特征进行故障诊断要比单独用时域或者频域特征的效果要好。 Aiming at the problem of rectifier fault diagnosis in wind power generation system, a classification algorithm based on particle swarm optimization-support vector machine (PSO-SVM) is proposed by taking a three-phase fully controlled rectifier circuit as an example. Firstly, the fault signal is obtained by MATLAB simulation, and then the fast fourier transform (FFT) is used to preprocess the fault signal. The principal component analysis (PCA) is used to extract the main frequency domain features, and the time domain features in a cycle are collected. Finally, SVM and PSO-SVM are used to train and test the extracted time domain, frequency domain and combined time-frequency domain features. The experimental results show that the fault diagnosis rate of time-domain, frequency-domain and time-frequency-domain features using the PSO-SVM method is higher than that of SVM, and the diagnosis time is also greatly improved. The effect of fault diagnosis using time-frequency-domain features is better than that using time-domain or frequency-domain features alone.
出处 《软件工程与应用》 2022年第4期731-742,共12页 Software Engineering and Applications
  • 相关文献

参考文献11

二级参考文献133

  • 1李敏远,陈如清.一种基于模式识别的可控整流电路故障诊断方法[J].电工技术学报,2004,19(7):53-58. 被引量:16
  • 2崔博文,任章.基于傅里叶变换和神经网络的逆变器故障检测与诊断[J].电工技术学报,2006,21(7):37-43. 被引量:53
  • 3崔江,王友仁,刘权.基于高阶谱与支持向量机的电力电子电路故障诊断技术[J].中国电机工程学报,2007,27(10):62-66. 被引量:40
  • 4()RichardA.Johnson,()DeanW.Wichern著,陆璇.实用多元统计分析[M]清华大学出版社,2001.
  • 5Lobos T,,Leonowicz Z,Szymanda J,et al.Application of higher-order spectral for signal processing in electrical power engineering. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering . 1998
  • 6Ma H,Lee Y S.Fault diagnosis of power electronic circuits based on neural network and waveform analysis. Proceedings of IEEE PEDS‘99 . 1999
  • 7Vapnik V.The nature of statistical learning theory. . 1998
  • 8Liu Aimin,Lin Xin,Liu Xiangdong.Fault Diagnosis Method of High Voltage Circuit Breaker Based on (RBF) Artificial Neural Network. Proceedings of 2005 IEEE/PES Transmission and Distribution Conference and Exhibition: Asia and Pacific . 2005
  • 9Hsu C W,Lin C J.A comparison of methods for multi-class support vector machines. IEEE Transactions on Neural Networks . 2002
  • 10Iannello C,Luo S,Issa Batarse. Full bridge ZCS PWM converter for high voltage and high power applications[J].Aerospace and Electronic Systems,2002,(02):515-526.

共引文献146

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部