期刊文献+

基于完备经验模态分解与深度学习的短期风电功率预测

Short-Term Wind Power Forecasting Based on CEEMD and Deep Learning Model
下载PDF
导出
摘要 根据各因素对风电场输出功率的影响,建立了基于CEEMD-GRU短期风电场输出功率的预测模型。通过与单模型BPNN、SVM、GRU和组合模型EMD-GRU、CEEMD-BP的预测结果进行对比,最终通过误差评价指标得出对风电功率预测结果精度较高的组合模型,以此来提高短期风功率预测精度 According to the influence of various factors on the output power of wind farms, a short-term wind farm output power prediction model based on CEEMD-GRU is established. By comparing with the prediction results of the single model BPNN, SVM, GRU and the combined model EMD-GRU, CEEMD- BP, the combined model with higher accuracy for the wind power prediction results is obtained through the error evaluation indicators, so as to improve the short-term wind power prediction accuracy.
出处 《智能电网(汉斯)》 2021年第4期297-304,共8页 Smart Grid
  • 相关文献

参考文献6

二级参考文献78

  • 1袁铁江,晁勤,李建林.风电并网技术[M].北京:机械工业出版社,2012.
  • 2Troen I, Petersen E L. European wind atlas [M]. Roskilde. Riso National Laboratory, 1989.
  • 3Damousis I G, Dokopoulos P. A fuzzy expert system for the forecasting of wind speed and power generation in wind farms [C]. IEEE Power Industry Computer Applications Conference, 2001.
  • 4Bernhard L, Kurt R, Bernhard E, et al. Wind power prediction in and future challenges Conference, Athens, Germany-recent advances [C]. European Wind Energy 2006.
  • 5Huang N E, Shen Z, Long S R. The empirical mode decomposition and the Hilbert spectrum or nonlinear and non-stationary time series analysis [J]. Proceedings of the Royal Society SocLond, 1998, 454 (1971) . 903-995.
  • 6Vapnik V. The nature of statistical learning theory [M]. New York: Springer-Verlag, 1995.
  • 7Cortes C, Vapnik V. Support vector networks [J]. Machine Learning, 1995 (20) : 273-297.
  • 8卢斌,慕亚茹,徐一秋.基于GRNN的网络出口流量预测[J].黑龙江科技信息,2008(13):63-63. 被引量:1
  • 9范高锋,王伟胜,刘纯.基于人工神经网络的风电功率短期预测系统[J].电网技术,2008,32(22):72-76. 被引量:122
  • 10范高锋,王伟胜,刘纯,戴慧珠.基于人工神经网络的风电功率预测[J].中国电机工程学报,2008,28(34):118-123. 被引量:358

共引文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部