期刊文献+

基于网络药理学的金银花治疗过敏性鼻炎作用机制研究

Study on Mechanism of Lonicerae japonica in Treatment of Allergic Rhinitis Based on Network Pharmacology
下载PDF
导出
摘要 目的:基于网络药理学探究金银花治疗过敏性鼻炎的作用机制。方法:通过TCMSP数据库,根据ADME筛选出金银花的活性成分及其靶点,使用Uniprot数据库规范靶点对应的人类基因名;通过Genecards、TTD、OMIM数据库获取过敏性鼻炎主要靶点,利用R语言绘制Venn图得到金银花活性成分作用靶点与过敏性鼻炎的交集靶点;Perl软件整理数据,采用Cytoscape3.7.2软件构建“金银花活性成分–过敏性鼻炎靶点”网络;利用String平台进行蛋白质相互作用分析,构建PPI网络并挖掘网络中潜在的蛋白质功能模块;采用Metascape平台进行GO富集与KEGG富集分析;最后通过Ledock进行分子对接验证。结果:通过TCMSP检索到236个金银花主要化学成分,筛选出23个活性成分,根据Uniprot数据库,排除无对应基因名部分,排除靶点重复部分,共获得活性成分17个,靶点193个;以“allergic rhinitis”为关键词,检索OMIM数据库、GeneCards数据库、TTD数据库的疾病潜在作用靶点,排除重复部分,得到过敏性鼻炎潜在作用靶点2089个,利用R语言绘制Venn图,得到疾病–活性成分共同靶点98个;利用CytoNCA得出Degree前3的活性成分是槲皮素、木犀草素和山柰酚;物种设置为人源性,以0.40为置信区间,构建了节点数98、边数1762、平均节点度36、平均局部聚类系数0.684的PPI网络;GO富集和KEGG富集显示,金银花主要参与的生物学过程包括生物对脂多糖的应答过程(response to lipopolysaccharide)、凋亡细胞通路(apoptotic signaling pathway)、调节细胞黏附(regulation of cell adhesion)、对受伤的应答(response to wounding)、对毒性物质的应答(response to toxic substance)等,参与的通路主要有癌症信号通路(Pathways in cancer)、流体剪切应力与动脉粥样硬化(Fluid shear stress and atherosclerosis)、IL-17信号通路(IL-17signaling pathway)以及癌症蛋白聚糖(Proteoglycans in cancer)等,相关靶点治疗过敏性鼻炎的功能主要富集于转录因子结合(transcription factor binding)、蛋白均二聚活性(protein homodimerization activity)、细胞因子受体结合(cytokine receptor binding)、激酶结合(kinase binding)、蛋白激酶活性(protein kinase activity)等;金银花关键活性成分槲皮素、木犀草素、山柰酚与疾病关键靶点AKT1 (PDB ID: 4EJN)对接亲和力分别为−6.07、−6.91、−5.81 kcal/mol,均 【−5 kcal/mol,结合稳定,验证了网络药理学。结论:金银花治疗过敏性鼻炎的机制具有多靶点、多通路特点,为后续的基础研究提供了思路。 Objective: To study the mechanism of Lonicerae japonica in the treatment of allergic rhinitis based on network pharmacology. Methods: Obtain the main active chemical components and targets of Lonicerae japonica through TCMSP database according to ADME, use Uniprot database to standardize the gene name of the targets;obtain the main targets of allergic rhinitis through Genecards, TTD, OMIM databases, and use R Language to draw Venn diagram;Perl software organizes data;use Cytoscape 3.7.2 software to construct “Lonicerae japonica active ingredient-allergic rhinitis target” network;use String platform for protein interaction analysis, construct PPI network and explore potential protein functional modules in the network;use Metascape platform for GO enrichment and KEGG enrichment;Finally, Ledock is used for molecular docking verification. Results: 236 main chemical components of Lonicerae japonica were retrieved through TCMSP, and 23 active components were screened out. According to Uniprot database, the part without corresponding gene name and the repeated part of target were excluded. A total of 17 active components and 193 targets were obtained;set “allergicrhinitis” as the key word, search OMIM database, GeneCards database, TTD database for potential disease targets, exclude duplicate parts, get 2089 potential targets for allergic rhinitis, use R language to draw Venn diagram, get disease-active ingredient common target 98 points;use CytoNCA to get the top 3 active ingredients that are quercetin, luteolin, and kaempferol according to Degree;the species is set to human origin, with a confidence interval of 0.40, the number of nodes is 98, the number of edges is 1762, and the average A PPI network with a node degree of 36 and an average local clustering coefficient of 0.684;GO enrichment and KEGG enrichment show that Lonicerae japonica mainly participates in biological processes including biological response to lipopolysaccharide, apoptotic signaling pathway, regulation of cell adhesion, response to wounding, response to toxic substances, etc. The main pathways involved are Pathways in cancer, Fluid shear stress and atherosclerosis, IL-17 signaling pathway and Proteoglycans in cancer, etc. The functions of related targets for the treatment of allergic rhinitis are mainly enriched in transcription factor binding, protein homodimerization activity, cytokine receptor binding, kinase binding, protein kinase activity, etc. The key active ingredients quercetin, luteolin, kaempferol and the key disease target AKT1 (PDBID: 4EJN) docking affinity were −6.07, −6.91, −5.81 kcal/mol, all <−5 kcal/mol, indicating the combination was stable, which verified network pharmacology. Conclusion: The mechanism of Lonicerae japonica in treating allergic rhinitis was characterized by multi-target and multi-pathway, which could provide insights for further experimental study.
出处 《中医学》 2021年第3期402-413,共12页 Traditional Chinese Medicine
  • 相关文献

参考文献10

二级参考文献216

共引文献208

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部