期刊文献+

数学建模中微分方程模型教学方法的探究

Research on Teaching Method of Differential Equation Model in Mathematical Modeling
下载PDF
导出
摘要 微分方程模型是解决随时间演变的事件,在数学模型中具有重要地位,具有求解能力强,便于实现等优点。为了促使学生更好地掌握微分方程模型及应用,本文将从教学内容选择上要通俗易懂,教学设计要考虑学生实际水平,教学手段要采取多样化方法,考核方式要模块化等方面探讨数学建模中微分方程的教学方法,对提高学生的学习效果有一定的作用。 Differential equation model is to solve the events that evolve with time. It plays an important role in the mathematical model. It has the advantages of strong solving ability and easy realization. In order to enable students to better grasp the differential equation model and its application, this paper will discuss the differential equation teaching method in mathematical modeling from four aspects: the choice of teaching content should be easy to understand, the actual level of students should be taken into account in teaching design, the diversification of teaching methods and the modularization of assessment methods. It has a certain effect on improving students’ learning effect.
出处 《教育进展》 2024年第6期224-228,共5页 Advances in Education
  • 相关文献

参考文献6

二级参考文献26

  • 1黄兵.《数值分析》课程教学改革的几点思考[J].重庆教育学院学报,2005,18(6):13-15. 被引量:8
  • 2Carletti M, Burrage K, Burrage P M. Numerical simulation of stochastic ordinary differential equations in biomathematical modelling[J]. Mathematics and Computers in Simulation,2004,64(2):271-277.
  • 3Anna Marciniak-Czochra, Marek, Kimmel. Reaction-diffusion approach to modelling of the spread of early tumors along linear or tubular structures [J]. Journal of Theoretical Biology, 2007,244(3)..375-387.
  • 4Gozde Unal, Anthony Yezzi, Hamid Krim. Information-Theortie active polygons for unsupervised texture segmentation[J]. Intermational Journal of Computer Vision, 2005,62(3) : 199-219.
  • 5Chein-Shan Liu, Hong-Ki Hong. Non-oscillation criteria for hypoelastic models under simple shear deformation[J]. Journal of Elasticity,2000,57(3) :200-235.
  • 6JI C庞特里亚金.常微分方程[M].北京:高等教育出版社,2006,1.
  • 7C Henry Edwards,David E Penney.常微分方程基础(英文版·原书第5版)[M].北京:机械工业出版社,2006.250-532.
  • 8Van Iwaarden J L. The computer as a teaching tool in ordinary differential equations [J]. Computer & Mathematics with Applications, 1987,14 (1) : 25-32.
  • 9姜启源,谢金星,叶俊.数学模型[M].北京:高等教育出版社,2004.
  • 10张雄,李得虎.数学方法论与解题研究[M].北京:高等教育出版社,2005.

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部