期刊文献+

Study of Luminous Emission from a Coaxial Plasma Discharge Device in the Presence of External Transverse Magnetic Field

Study of Luminous Emission from a Coaxial Plasma Discharge Device in the Presence of External Transverse Magnetic Field
下载PDF
导出
摘要 The experimental investigations in this paper are focused on the study of luminous radiation emission from coaxial plasma discharge device and the effect of applied transverse magnetic field Btr on it. The experiment was done in (1.5 KJ - 10 KV) coaxial plasma discharge device. The discharge is operated in Nitrogen gas at pressures from 1 to 2.2 torr. Helmholtz magnetic coils are placed outside the coaxial electrodes with its axis at a distance = 3 cm from the coaxial electrodes muzzle, then Btr with a maximum induction ≈ 0.85 T is applied perpendicularly to the expanded plasma from the coaxial electrodes muzzle. The diagnostics used in the measurements include a Rogowsky coil and a photomultiplier tube equipped with light collimator. The experimental results showed that the maximum intensity of luminous radiation is detected at axial distance (side view) z = 8 cm and gas pressure, P = 2.2 torr. It also showed that the maximum value of axial luminous plasma zone velocity = 2.383 × 106 cm/s at z = 11 cm and P = 1.4 torr. In mode of presence of external Btr, the investigations have shown that, at P = 1.4 torr the maximum intensity of luminous radiation (detected at end-view position) is reduced by 17%, the full width at half maximum, FWHM of luminous radiation signal is increased by 40 times, while the luminous radiation signal is delayed by ta = 438 μs. In two modes of operation ta and FWHM have approximately a minimum values at P = 1.4 torr. The experimental investigations in this paper are focused on the study of luminous radiation emission from coaxial plasma discharge device and the effect of applied transverse magnetic field Btr on it. The experiment was done in (1.5 KJ - 10 KV) coaxial plasma discharge device. The discharge is operated in Nitrogen gas at pressures from 1 to 2.2 torr. Helmholtz magnetic coils are placed outside the coaxial electrodes with its axis at a distance = 3 cm from the coaxial electrodes muzzle, then Btr with a maximum induction ≈ 0.85 T is applied perpendicularly to the expanded plasma from the coaxial electrodes muzzle. The diagnostics used in the measurements include a Rogowsky coil and a photomultiplier tube equipped with light collimator. The experimental results showed that the maximum intensity of luminous radiation is detected at axial distance (side view) z = 8 cm and gas pressure, P = 2.2 torr. It also showed that the maximum value of axial luminous plasma zone velocity = 2.383 × 106 cm/s at z = 11 cm and P = 1.4 torr. In mode of presence of external Btr, the investigations have shown that, at P = 1.4 torr the maximum intensity of luminous radiation (detected at end-view position) is reduced by 17%, the full width at half maximum, FWHM of luminous radiation signal is increased by 40 times, while the luminous radiation signal is delayed by ta = 438 μs. In two modes of operation ta and FWHM have approximately a minimum values at P = 1.4 torr.
机构地区 不详
出处 《Energy and Power Engineering》 2011年第4期444-449,共6页 能源与动力工程(英文)
关键词 COAXIAL DISCHARGE LUMINOUS Radiation TRANSVERSE Magnetic Field Energy LOSSES Coaxial Discharge Luminous Radiation Transverse Magnetic Field Energy Losses
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部