摘要
In this study, an interval probability-based inexact two-stage stochastic (IP-ITSP) model is developed for environmental pollutants control and greenhouse gas (GHG) emissions reduction management in regional energy system under uncertainties. In the IP-ITSP model, methods of interval probability, interval-parameter programming (IPP) and two-stage stochastic programming (TSP) are introduced into an integer programming framework;the developed model can tackle uncertainties described in terms of interval values and interval probability distributions. The developed model is applied to a case of planning GHG -emission mitigation in a regional electricity system, demonstrating that IP-ITSP is applicable to reflecting complexities of multi-uncertainty, and capable of addressing the problem of GHG-emission reduction. 4 scenarios corresponding to different GHG -emission mitigation levels are examined;the results indicates that the model could help decision makers identify desired GHG mitigation policies under various economic costs and environmental requirements.
In this study, an interval probability-based inexact two-stage stochastic (IP-ITSP) model is developed for environmental pollutants control and greenhouse gas (GHG) emissions reduction management in regional energy system under uncertainties. In the IP-ITSP model, methods of interval probability, interval-parameter programming (IPP) and two-stage stochastic programming (TSP) are introduced into an integer programming framework;the developed model can tackle uncertainties described in terms of interval values and interval probability distributions. The developed model is applied to a case of planning GHG -emission mitigation in a regional electricity system, demonstrating that IP-ITSP is applicable to reflecting complexities of multi-uncertainty, and capable of addressing the problem of GHG-emission reduction. 4 scenarios corresponding to different GHG -emission mitigation levels are examined;the results indicates that the model could help decision makers identify desired GHG mitigation policies under various economic costs and environmental requirements.