期刊文献+

Electrical Tree Simulation Based on the Self-Organization Criticality

Electrical Tree Simulation Based on the Self-Organization Criticality
下载PDF
导出
摘要 So far much effort has been made to understand the development of electrical treeing. For the simulation based study of electrical treeing, the most common method is to apply DBM stochastic model to simulate the growing of electrical treeing patterns. Previous simulation results showed that this stochastic model is capable of simulating the real electrical treeing patterns in a point-to-plane electrode system. However, this model only allows the tree channels to propagate on equipotential lines proportional to local electrical field. Therefore, it is necessary to develop a novel stochastic model to simulate the electrical patterns in order to get a good agreement with experimental results. So far much effort has been made to understand the development of electrical treeing. For the simulation based study of electrical treeing, the most common method is to apply DBM stochastic model to simulate the growing of electrical treeing patterns. Previous simulation results showed that this stochastic model is capable of simulating the real electrical treeing patterns in a point-to-plane electrode system. However, this model only allows the tree channels to propagate on equipotential lines proportional to local electrical field. Therefore, it is necessary to develop a novel stochastic model to simulate the electrical patterns in order to get a good agreement with experimental results.
出处 《Energy and Power Engineering》 2013年第4期1273-1276,共4页 能源与动力工程(英文)
关键词 FRACTAL Electrical TREE SIMULATION SELF-ORGANIZATION CRITICALITY Fractal Electrical Tree simulation Self-Organization Criticality
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部