期刊文献+

Dye-Sensitized Solar Cells Based on TiO<sub>2</sub>Nanoparticles Modified by Wet Milling

Dye-Sensitized Solar Cells Based on TiO<sub>2</sub>Nanoparticles Modified by Wet Milling
下载PDF
导出
摘要 TiO2 nanoparticles were produced from a commercial anatase powder through a wet milling process. The effect of grinding intensity, which is directly dependent on the operating parameters, was analyzed and the performance of polyethylene glycol (PEG400) as a dispersing agent in the milling system was also tested. The results showed that the processes using polyethylene glycol achieved a greater fragmentation of particles. This could be observed in the histograms made from SEM images taken from samples of powders from the processes, whose populations reached an average size of approximately 90 nm. The TiO2 powders obtained by milling were then used in the manufacture of dye-sensitized solar cells. It was verified that the powders produced using the dispersing agent achieved the greatest efficiencies, the highest being 0.94%. The current produced by the cells proved to be very low compared to the voltages obtained which gave acceptable values up to 0.81 V. TiO2 nanoparticles were produced from a commercial anatase powder through a wet milling process. The effect of grinding intensity, which is directly dependent on the operating parameters, was analyzed and the performance of polyethylene glycol (PEG400) as a dispersing agent in the milling system was also tested. The results showed that the processes using polyethylene glycol achieved a greater fragmentation of particles. This could be observed in the histograms made from SEM images taken from samples of powders from the processes, whose populations reached an average size of approximately 90 nm. The TiO2 powders obtained by milling were then used in the manufacture of dye-sensitized solar cells. It was verified that the powders produced using the dispersing agent achieved the greatest efficiencies, the highest being 0.94%. The current produced by the cells proved to be very low compared to the voltages obtained which gave acceptable values up to 0.81 V.
出处 《Energy and Power Engineering》 2014年第13期473-480,共8页 能源与动力工程(英文)
关键词 TiO2 NANOPARTICLES WET MILLING Solar Cells TiO2 Nanoparticles Wet Milling Solar Cells
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部