摘要
The interest on studying the impact of demand response is growing, especially on residential and commercial buildings which are responsible for a considerable consumption of energy worldwide. Also, it is virtually unquestionable that in most of these buildings there is a waste of energy, mainly electrical and thermal energy. In this context, the establishment of intelligent networks in these buildings, as well as the use of small or even medium-sized renewable sources of power can significantly contribute to the reduction and preservation of power. In this article, the results of the simulations carried out in a specific simulation program to evaluate the benefits brought by the installation of some local sources of power on a commercial building are presented. It is evaluated the impact on some of the economic variables linked to that system as well as compared its greenhouse gas emissions for the conditions with and without the presence of the local generation. It will also evaluate the building’s response towards the utility requirements, mainly the possibility to reduce or partially compensate the energy consumed, commonly referred to as Demand Response.
The interest on studying the impact of demand response is growing, especially on residential and commercial buildings which are responsible for a considerable consumption of energy worldwide. Also, it is virtually unquestionable that in most of these buildings there is a waste of energy, mainly electrical and thermal energy. In this context, the establishment of intelligent networks in these buildings, as well as the use of small or even medium-sized renewable sources of power can significantly contribute to the reduction and preservation of power. In this article, the results of the simulations carried out in a specific simulation program to evaluate the benefits brought by the installation of some local sources of power on a commercial building are presented. It is evaluated the impact on some of the economic variables linked to that system as well as compared its greenhouse gas emissions for the conditions with and without the presence of the local generation. It will also evaluate the building’s response towards the utility requirements, mainly the possibility to reduce or partially compensate the energy consumed, commonly referred to as Demand Response.