期刊文献+

A Novel Modularizing Design Method of 10 kV High Voltage Switchgear for Live Maintenance 被引量:1

A Novel Modularizing Design Method of 10 kV High Voltage Switchgear for Live Maintenance
下载PDF
导出
摘要 Due to imperfect manufacturing technology, design defects and environmental impact, the failure rate of 10 kV switchgear is very high. For this reason, based on taken present situation of traditional switchgear and the current technical requirements for switchgear into account, a new reliable and safe modular high voltage switchgear design method is presented in this paper, which can reduce the failure rate of switchgear and improve the reliability of power supply. The electric field and temperature rise simulation model are established to check the reasonability and validity. By using the finite element software, the simulation results show that the design in this paper has a maximum temperature rise of 55 K for the main cabinet and a maximum temperature rise of 45 K for the deputy cabinet, which is far below the international standard of 70 K. The areas where the partial discharge is likely to occur within the switchgear are places such as the connection between bus-bar and cabinet, bus-bar joint and bus-bar corner. In order to avoid potential dangers, the discharge point must be located in time to prevent insulation fault of electrical equipment of the high voltage switchgear. The simulation results demonstrate that the design method in this paper greatly improve the reliability of switchgear and meets the demands of power system. Due to imperfect manufacturing technology, design defects and environmental impact, the failure rate of 10 kV switchgear is very high. For this reason, based on taken present situation of traditional switchgear and the current technical requirements for switchgear into account, a new reliable and safe modular high voltage switchgear design method is presented in this paper, which can reduce the failure rate of switchgear and improve the reliability of power supply. The electric field and temperature rise simulation model are established to check the reasonability and validity. By using the finite element software, the simulation results show that the design in this paper has a maximum temperature rise of 55 K for the main cabinet and a maximum temperature rise of 45 K for the deputy cabinet, which is far below the international standard of 70 K. The areas where the partial discharge is likely to occur within the switchgear are places such as the connection between bus-bar and cabinet, bus-bar joint and bus-bar corner. In order to avoid potential dangers, the discharge point must be located in time to prevent insulation fault of electrical equipment of the high voltage switchgear. The simulation results demonstrate that the design method in this paper greatly improve the reliability of switchgear and meets the demands of power system.
出处 《Energy and Power Engineering》 2020年第4期1-13,共13页 能源与动力工程(英文)
关键词 SWITCHGEAR FINITE ELEMENT Temperature FIELD ELECTRIC FIELD Improvement Switchgear Finite Element Temperature Field Electric Field Improvement
  • 相关文献

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部