期刊文献+

Optimum Sizing and Economic Analysis of Standalone PV System with a Small Size Grinding Mill

Optimum Sizing and Economic Analysis of Standalone PV System with a Small Size Grinding Mill
下载PDF
导出
摘要 <span style="font-family:Verdana;">This work presents the results of the characterization of a standalone photovoltaic system for the electrification of a household located in rural area in the western region of Cameroon: Nziih-Bafou in Dschang (5.35</span><span style="white-space:normal;background-color:#FFFFFF;font-family:Verdana;">°</span><span style="font-family:Verdana;">N, 10.05</span><span style="white-space:normal;background-color:#FFFFFF;font-family:Verdana;">°</span><span style="font-family:Verdana;">E and 1900 m). In order to cope with the</span><span "=""> </span><span style="font-family:Verdana;">maintenance charges and reduce the investment cost, a small mill was added to the appliances of the household for income generation. The assessment of the energy demand was made by taking into account the reactive energy due to the heavy</span><span "=""> </span><span style="font-family:Verdana;">consumption of energy by the mill’s motor, especially during ignition. The sizing of all the system’s components was carried out with the prospect of determining an optimum design in accordance with daily electricity demand, site irradiance profile and climatic conditions. In this context, tilt angles applicable to the PV structure and that allow</span><span "=""> </span><span style="font-family:Verdana;">to receive the maximum irradiance as a function of the periods of the year were determined using the Hay model.</span><span "=""> </span><span style="font-family:Verdana;">This approach provides the system with incident irradiance greater than or at the limit equal to that received by a horizontal surface on the same site</span><span "=""> </span><span style="font-family:Verdana;">compared to the case of a single tilt angle where the irradiance on the inclined plane is often lower than that</span><span "=""> </span><span "=""><span style="font-family:Verdana;">on the horizontal. The economic analysis of the PV system showed an </span><span style="font-family:Verdana;">initial cost of $4448</span></span><span "=""> </span><span style="font-family:Verdana;">and the Life Cost Cycle amounted to $24,495. This</span><span style="font-family:Verdana;"> amount corresponds to a present cost per kilowatt hour of $0.44. The Net Present Value</span><span "=""> </span><span style="font-family:Verdana;">(NPV) of the project ($7793) over its lifetime (20 years)</span><span "=""> </span><span style="font-family:Verdana;">shows a payback period of less than 4 years.</span> <span style="font-family:Verdana;">This work presents the results of the characterization of a standalone photovoltaic system for the electrification of a household located in rural area in the western region of Cameroon: Nziih-Bafou in Dschang (5.35</span><span style="white-space:normal;background-color:#FFFFFF;font-family:Verdana;">°</span><span style="font-family:Verdana;">N, 10.05</span><span style="white-space:normal;background-color:#FFFFFF;font-family:Verdana;">°</span><span style="font-family:Verdana;">E and 1900 m). In order to cope with the</span><span "=""> </span><span style="font-family:Verdana;">maintenance charges and reduce the investment cost, a small mill was added to the appliances of the household for income generation. The assessment of the energy demand was made by taking into account the reactive energy due to the heavy</span><span "=""> </span><span style="font-family:Verdana;">consumption of energy by the mill’s motor, especially during ignition. The sizing of all the system’s components was carried out with the prospect of determining an optimum design in accordance with daily electricity demand, site irradiance profile and climatic conditions. In this context, tilt angles applicable to the PV structure and that allow</span><span "=""> </span><span style="font-family:Verdana;">to receive the maximum irradiance as a function of the periods of the year were determined using the Hay model.</span><span "=""> </span><span style="font-family:Verdana;">This approach provides the system with incident irradiance greater than or at the limit equal to that received by a horizontal surface on the same site</span><span "=""> </span><span style="font-family:Verdana;">compared to the case of a single tilt angle where the irradiance on the inclined plane is often lower than that</span><span "=""> </span><span "=""><span style="font-family:Verdana;">on the horizontal. The economic analysis of the PV system showed an </span><span style="font-family:Verdana;">initial cost of $4448</span></span><span "=""> </span><span style="font-family:Verdana;">and the Life Cost Cycle amounted to $24,495. This</span><span style="font-family:Verdana;"> amount corresponds to a present cost per kilowatt hour of $0.44. The Net Present Value</span><span "=""> </span><span style="font-family:Verdana;">(NPV) of the project ($7793) over its lifetime (20 years)</span><span "=""> </span><span style="font-family:Verdana;">shows a payback period of less than 4 years.</span>
作者 Leonard Akana Nguimdo Leon Tientcheu Tassi Leonard Akana Nguimdo;Leon Tientcheu Tassi(Department of Electrical and Electronic Engineering, Faculty of Engineering and Technology, University of Buea, Buea, Cameroon;Environmental Energy Technologies Laboratory (EETL), Faculty of Sciences, University of Yaoundé 1, Yaoundé, Cameroon)
出处 《Energy and Power Engineering》 2020年第7期432-444,共13页 能源与动力工程(英文)
关键词 Standalone Photovoltaic System OPTIMIZATION Hay Model Reactive Energy Life Cycle Cost Net Present Value Standalone Photovoltaic System Optimization Hay Model Reactive Energy Life Cycle Cost Net Present Value
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部