摘要
The fiber reinforced plastics (FRPs) are being used widely in the most diverse applications ranging from the aerospace to the sports goods industry. Drilling in particular is important to facilitate the assembly operations of structurally intricate composite products. The drilling of holes in FRPs leads to drilling induced damage which is an important research area. The researchers worldwide have tried to minimize the damage by optimizing the operating variables, and tool designs as well as by developing unconventional methods of hole making. Most of the work done so far has been experimental in nature with little or no focus on numerical simulation of the drilling behavior of FRPs. In the present research endeavor, a finite element model has been developed to investigate the drilling induced damage of FRP laminates.
The fiber reinforced plastics (FRPs) are being used widely in the most diverse applications ranging from the aerospace to the sports goods industry. Drilling in particular is important to facilitate the assembly operations of structurally intricate composite products. The drilling of holes in FRPs leads to drilling induced damage which is an important research area. The researchers worldwide have tried to minimize the damage by optimizing the operating variables, and tool designs as well as by developing unconventional methods of hole making. Most of the work done so far has been experimental in nature with little or no focus on numerical simulation of the drilling behavior of FRPs. In the present research endeavor, a finite element model has been developed to investigate the drilling induced damage of FRP laminates.