期刊文献+

Finite Element Analysis of Von-Mises Stress Distribution in a Spherical Shell of Liquified Natural Gas (Lng) Pressure Vessels 被引量:3

Finite Element Analysis of Von-Mises Stress Distribution in a Spherical Shell of Liquified Natural Gas (Lng) Pressure Vessels
下载PDF
导出
摘要 This research work investigated the modeling of Von Mises stress in LNG Spherical Carbon Steel Storage tank using assumed displacement Finite Element analysis based on shallow shell triangular elements. Using equations of elasticity, constant thickness carbon steel spherical storage tanks were subjected to different loading conditions. This paper stresses the need for proper definition of shallow element using sector angles to obtain the shallowness. The shallow spherical triangular element has five degrees of freedom at each of its corner node, which are the essential external degrees of freedom. The assumed displacement fields of these shallow triangular elements satisfied the exact requirement of rigid body modes of motion. The FORTRAN 90 programming language was used for the programme coding to solve finite element equations resulting from the model while Von Mises stresses distribution within the spherical storage tank shell subjected to different internal pressures were determined. The results showed that the use of non-shallow elements due to improper sector angles resulted in unreliable results while real shallow elements produced results that tallied with ASME Section VIII Div 1, Part UG values. This research work investigated the modeling of Von Mises stress in LNG Spherical Carbon Steel Storage tank using assumed displacement Finite Element analysis based on shallow shell triangular elements. Using equations of elasticity, constant thickness carbon steel spherical storage tanks were subjected to different loading conditions. This paper stresses the need for proper definition of shallow element using sector angles to obtain the shallowness. The shallow spherical triangular element has five degrees of freedom at each of its corner node, which are the essential external degrees of freedom. The assumed displacement fields of these shallow triangular elements satisfied the exact requirement of rigid body modes of motion. The FORTRAN 90 programming language was used for the programme coding to solve finite element equations resulting from the model while Von Mises stresses distribution within the spherical storage tank shell subjected to different internal pressures were determined. The results showed that the use of non-shallow elements due to improper sector angles resulted in unreliable results while real shallow elements produced results that tallied with ASME Section VIII Div 1, Part UG values.
机构地区 不详
出处 《Engineering(科研)》 2011年第10期1012-1017,共6页 工程(英文)(1947-3931)
关键词 Von MISES Stress FE Modeling LNG SPHERICAL Storage TANK ASME ASCE Von Mises Stress FE Modeling LNG Spherical Storage Tank ASME ASCE
  • 相关文献

同被引文献2

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部