摘要
The hydrocarbon deposits have stimulated worldwide efforts to understand gas production from hydrate dissociation in hydrate reservoirs well. This paper deals with the potential of gas hydrates as a source of energy which is widely available in permafrost and oceanic sediments. It discusses methods for gas production from natural gas hydrates. Authors provide a detailed methodology used to model gas productivity recovery from hydrate reservoir well. The mathematical modelling of gas dissociation from hydrate reservoir as a tool for evaluating the potential of gas hydrates for natural gas production. The simulation results show that the process of natural gas production in a hydrate reservoir is a sensitive function of reservoir temperature and hydrate zone permeability. The model couples nth order decomposition kinetics with gas flow through porous media. The models provide a simple and useful tool for hydrate reservoir analysis.
The hydrocarbon deposits have stimulated worldwide efforts to understand gas production from hydrate dissociation in hydrate reservoirs well. This paper deals with the potential of gas hydrates as a source of energy which is widely available in permafrost and oceanic sediments. It discusses methods for gas production from natural gas hydrates. Authors provide a detailed methodology used to model gas productivity recovery from hydrate reservoir well. The mathematical modelling of gas dissociation from hydrate reservoir as a tool for evaluating the potential of gas hydrates for natural gas production. The simulation results show that the process of natural gas production in a hydrate reservoir is a sensitive function of reservoir temperature and hydrate zone permeability. The model couples nth order decomposition kinetics with gas flow through porous media. The models provide a simple and useful tool for hydrate reservoir analysis.