摘要
One marine bacterial strain, R3, has been newly isolated from the intertidal zone of Dinghai sea area. Measurements of a-keto acids and H2O2existing in fermentation supernatant were carried out to show that R3 can produce L-amino acid oxidase (LAAO) with a broad substrate specificity. Physiological and biochemical analysis showed that it can grow great at the conditions with sodium chloride concentration of 1.5%-3%, temperature of 15?C -35?C and pH of 6-7. In addition, molecular identification of 16S rDNA was performed to show that R3 was proximal toPseudoalteromonasspp. with the highest identity of 98.5% toPseudoalteromonasrubra. Therefore, it was designated asPseudoalteromonassp. R3. Further studies are required to arrive at a better understanding of this LAAO and secure an application.
One marine bacterial strain, R3, has been newly isolated from the intertidal zone of Dinghai sea area. Measurements of a-keto acids and H2O2existing in fermentation supernatant were carried out to show that R3 can produce L-amino acid oxidase (LAAO) with a broad substrate specificity. Physiological and biochemical analysis showed that it can grow great at the conditions with sodium chloride concentration of 1.5%-3%, temperature of 15?C -35?C and pH of 6-7. In addition, molecular identification of 16S rDNA was performed to show that R3 was proximal toPseudoalteromonasspp. with the highest identity of 98.5% toPseudoalteromonasrubra. Therefore, it was designated asPseudoalteromonassp. R3. Further studies are required to arrive at a better understanding of this LAAO and secure an application.