期刊文献+

New Approach for Limited-Angle Problems in Electron Microscope Based on Compressed Sensing

New Approach for Limited-Angle Problems in Electron Microscope Based on Compressed Sensing
下载PDF
导出
摘要 New advances within the recently rediscovered field of Compressed Sensing (CS) have opened for a great variety of new possibilities in the field of image reconstruction and more specifically in medical image reconstruction. In this work, a new approach using a CS-based algorithm is proposed and used in order to solve limited-angle problems (LAPs), like the ones that typically occur in computed tomography or electron microscope. This approach is based on a variant of the Robbins-Monro stochastic approximation procedure, developed by Egaziarian, using regularization by a spatially adaptive filter. This proposal consists on filling the gaps of missing or unobserved data with random noise and enabling a spatially adaptive denoising filter to regularize the data and reveal the underlying topology. This method was tested on different 3D transmission electron microscope datasets that presented different missing data artifacts (e.g, wedge or cone shape). The test results show a great potential for solving LAPs using the proposed technique. New advances within the recently rediscovered field of Compressed Sensing (CS) have opened for a great variety of new possibilities in the field of image reconstruction and more specifically in medical image reconstruction. In this work, a new approach using a CS-based algorithm is proposed and used in order to solve limited-angle problems (LAPs), like the ones that typically occur in computed tomography or electron microscope. This approach is based on a variant of the Robbins-Monro stochastic approximation procedure, developed by Egaziarian, using regularization by a spatially adaptive filter. This proposal consists on filling the gaps of missing or unobserved data with random noise and enabling a spatially adaptive denoising filter to regularize the data and reveal the underlying topology. This method was tested on different 3D transmission electron microscope datasets that presented different missing data artifacts (e.g, wedge or cone shape). The test results show a great potential for solving LAPs using the proposed technique.
出处 《Engineering(科研)》 2013年第10期575-578,共4页 工程(英文)(1947-3931)
关键词 Compressed SENSING Image RECONSTRUCTION Adaptive FILTERS LIMITED ANGLE Problem TEM Compressed Sensing Image Reconstruction Adaptive Filters Limited Angle Problem TEM
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部