期刊文献+

Load-Measuring Pot Bearing with Built-In Load Cell —Part II: Fatigue Performance and Experimental Temperature Correction

Load-Measuring Pot Bearing with Built-In Load Cell —Part II: Fatigue Performance and Experimental Temperature Correction
下载PDF
导出
摘要 This paper presents the results of fatigue performance tests performed up to 10 million cycles on a load-measuring pot bearing with built-in load cell to verify its field applicability and proposes an empirical temperature correction formula. In Part I of this work, various measurement performances of the load-measuring pot bearing were evaluated through static and dynamic loading tests. Bridge bearings are subjected to the effect of fatigue caused by the repeated application of moving loads and exposed to harsh site conditions including cold and hot weathers differently to laboratory conditions. Accordingly, the durability of the load-measuring pot bearing with built-in load cell shall be secured and the environmental effects like temperature shall be minimized for its application on field. This study conducted fatigue tests up to 10 million cycles on a load-measuring pot bearing with the capacity of 1000 kN to examine eventual degradation of the measurement accuracy with respect to the number of fatigue loading cycles. In addition, the experimental temperature correction procedure is proposed to obtain the temperature correction formula enabling to correct the effect of temperature on the load measurement. This paper presents the results of fatigue performance tests performed up to 10 million cycles on a load-measuring pot bearing with built-in load cell to verify its field applicability and proposes an empirical temperature correction formula. In Part I of this work, various measurement performances of the load-measuring pot bearing were evaluated through static and dynamic loading tests. Bridge bearings are subjected to the effect of fatigue caused by the repeated application of moving loads and exposed to harsh site conditions including cold and hot weathers differently to laboratory conditions. Accordingly, the durability of the load-measuring pot bearing with built-in load cell shall be secured and the environmental effects like temperature shall be minimized for its application on field. This study conducted fatigue tests up to 10 million cycles on a load-measuring pot bearing with the capacity of 1000 kN to examine eventual degradation of the measurement accuracy with respect to the number of fatigue loading cycles. In addition, the experimental temperature correction procedure is proposed to obtain the temperature correction formula enabling to correct the effect of temperature on the load measurement.
出处 《Engineering(科研)》 2013年第11期881-886,共6页 工程(英文)(1947-3931)
关键词 POT BEARING Load-Measuring LOAD Cell FATIGUE Temperature Correction Pot Bearing Load-Measuring Load Cell Fatigue Temperature Correction
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部