期刊文献+

Optimal Aggregate Production Plans via a Constrained LQG Model

Optimal Aggregate Production Plans via a Constrained LQG Model
下载PDF
导出
摘要 In this paper, a single product, multi-period, aggregate production planning problem is formulated as a linear-quadratic Gaussian (LQG) optimal control model with chance constraints on state and control variables. Such formulation is based on a classical production planning model developed in 1960 by Holt, Modigliani, Muth and Simon, and known, since then, as the HMMS model [1]. The proposed LQG model extends the HMMS model, taking into account both chance-constraints on the decision variables and data generating process, based on ARMA model, to represent the fluctuation of demand. Using the certainty-equivalence principle, the constrained LQG model can be transformed into an equivalent, but deterministic model, which is called here as Mean Value Problem (MVP). This problem preserves the main properties of the original model such as convexity and some statistical moments. Besides, it is easier to be implemented and solved numerically than its stochastic version. In addition, two very simple suboptimal procedures from stochastic control theory are briefly discussed. Finally, an illustrative example is introduced to show how the extended HMMS model can be used to develop plans and to generate production scenarios. In this paper, a single product, multi-period, aggregate production planning problem is formulated as a linear-quadratic Gaussian (LQG) optimal control model with chance constraints on state and control variables. Such formulation is based on a classical production planning model developed in 1960 by Holt, Modigliani, Muth and Simon, and known, since then, as the HMMS model [1]. The proposed LQG model extends the HMMS model, taking into account both chance-constraints on the decision variables and data generating process, based on ARMA model, to represent the fluctuation of demand. Using the certainty-equivalence principle, the constrained LQG model can be transformed into an equivalent, but deterministic model, which is called here as Mean Value Problem (MVP). This problem preserves the main properties of the original model such as convexity and some statistical moments. Besides, it is easier to be implemented and solved numerically than its stochastic version. In addition, two very simple suboptimal procedures from stochastic control theory are briefly discussed. Finally, an illustrative example is introduced to show how the extended HMMS model can be used to develop plans and to generate production scenarios.
出处 《Engineering(科研)》 2014年第12期773-788,共16页 工程(英文)(1947-3931)
关键词 Production PLANNING Operations Management STOCHASTIC MODELS Optimization Forecasting Production Planning Operations Management Stochastic Models Optimization Forecasting
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部