摘要
Due to requests on high rotary velocity of novel smart empennage-stable projectiles, the rolling characteristics under wide-angle oblique angles are studied. Since the wind tunnel tests performed verify numerical simulation, so that the latter method can be applied to study the rolling characteristics widely combining theoretical models. In the theoretical part, the rolling dynamics equations are established considering the span, taper ratio and oblique angle of the empennages, and are further solved combing ballistic equations. For the simulation, the rolling moment coefficients under various rotary velocities are solved based on rotating coordinate system methods, so that the balance rotary velocity can be obtained using interpolation. The results indicate that shorter span, higher taper ratio and especially larger oblique angle can bring higher projectile rotary velocity;the balance rotary velocity is approximately linear to the oblique angle in a certain range.
Due to requests on high rotary velocity of novel smart empennage-stable projectiles, the rolling characteristics under wide-angle oblique angles are studied. Since the wind tunnel tests performed verify numerical simulation, so that the latter method can be applied to study the rolling characteristics widely combining theoretical models. In the theoretical part, the rolling dynamics equations are established considering the span, taper ratio and oblique angle of the empennages, and are further solved combing ballistic equations. For the simulation, the rolling moment coefficients under various rotary velocities are solved based on rotating coordinate system methods, so that the balance rotary velocity can be obtained using interpolation. The results indicate that shorter span, higher taper ratio and especially larger oblique angle can bring higher projectile rotary velocity;the balance rotary velocity is approximately linear to the oblique angle in a certain range.