期刊文献+

Effect of Nozzle Shaped Triangular Longitudinal Fins on Heat Transfer

Effect of Nozzle Shaped Triangular Longitudinal Fins on Heat Transfer
下载PDF
导出
摘要 Fins are used for enhancement of heat transfer. Triangular fins are arranged in form of nozzle and heat transfer coefficient is calculated. Angle of taper of nozzle is changed i.e. angles of triangles are varied and then heat transfer coefficient is calculated. Total finned area of all fins is almost the same. Number of fins and orientation of fins are different. In this study to calculate heat transfer coefficient of unfinned area open channel is considered where density and pressure are constant. This study shows that heat transfer is enhanced by 213%, 268% and 339% using 30°, 45° and 60° fins. Computational results show that heat transfer is enhanced by 108%, 130%, 146% using 30°, 45° and 60° fins. Fins are used for enhancement of heat transfer. Triangular fins are arranged in form of nozzle and heat transfer coefficient is calculated. Angle of taper of nozzle is changed i.e. angles of triangles are varied and then heat transfer coefficient is calculated. Total finned area of all fins is almost the same. Number of fins and orientation of fins are different. In this study to calculate heat transfer coefficient of unfinned area open channel is considered where density and pressure are constant. This study shows that heat transfer is enhanced by 213%, 268% and 339% using 30°, 45° and 60° fins. Computational results show that heat transfer is enhanced by 108%, 130%, 146% using 30°, 45° and 60° fins.
作者 Pulijala Shravya Pulijala Shravya(Department of Mechanical Engineering, Birla Institute of Technology and Science (BITS), Hyderabad, India)
出处 《Engineering(科研)》 2016年第12期831-836,共6页 工程(英文)(1947-3931)
关键词 Heat Transfer Enhancement FINS Triangular Longitudinal Fins Heat Transfer Enhancement Fins Triangular Longitudinal Fins
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部