摘要
The development of the capabilities of computational tools has created up new possibilities for the effective use of a number of classical mathematical methods and algorithms for solving many important problems in the power engineering. In particular, a set of algorithms are developed to optimize the modes of electric power systems based on genetic algorithms. At the same time, the issues of taking into account functional constraints in solving such problems by genetic algorithms need to be improved. In accordance with it in this article the problems of taking into account of different constraints in optimization of modes of power systems using genetic algorithms are considered. The algorithm of optimization by genetic algorithm taking into account of functional constraints in forms of equality and inequality by penalty functions is proposed. The results of research of proposed algorithm’s efficiency in example of optimization of mode of power system with 8 buses, 4 thermal power plants and 3 transmission lines with controlled power flow are presented.
The development of the capabilities of computational tools has created up new possibilities for the effective use of a number of classical mathematical methods and algorithms for solving many important problems in the power engineering. In particular, a set of algorithms are developed to optimize the modes of electric power systems based on genetic algorithms. At the same time, the issues of taking into account functional constraints in solving such problems by genetic algorithms need to be improved. In accordance with it in this article the problems of taking into account of different constraints in optimization of modes of power systems using genetic algorithms are considered. The algorithm of optimization by genetic algorithm taking into account of functional constraints in forms of equality and inequality by penalty functions is proposed. The results of research of proposed algorithm’s efficiency in example of optimization of mode of power system with 8 buses, 4 thermal power plants and 3 transmission lines with controlled power flow are presented.