摘要
This study presents a methodology used in developing the competitiveness improvement framework (CIF) for laboratories, in particular, Forensic Science Laboratories (FSLs). The cyclic nature of FSL processes allowed data collection for the purpose of identification of factors affecting FSL performance (cause factors). Flow charts were used to represent mathematical formulations for cause factor measurements and quantification of the baseline data on turnaround time (TAT), backlogs for case files (Bg), turnaround time in the supply chain (Tsc), and employee absenteeism (Ab). By quantifying the cause factors in addition to academic development coefficient (Ad) and complex longevity (Lc) for FSL employees, it was possible to establish the organizational design features requiring improvements. The relevance of cause factors to FSL stakeholders and means of improvement and sustainability were established. A detailed road map towards CIF was presented using D-MAIC methodology. The rated cause factors based on challenges in the FSL business environment were subjected to Pareto analysis to prioritize the challenges in order to improve FSLs’ competitiveness. The interrelationship between the three dimensions of competitiveness improvement (process, performance and planning) was presented in terms of the affected six cause factors. Also, the potential lean practices for improving competitiveness of FSL based on measured cause factors have been presented. This paper introduced methods and measures for improving operational competitiveness of laboratories. The CIF was finally presented in a form of a series of three flow charts summarizing all steps implemented in its development with inputs and cause factors involved.
This study presents a methodology used in developing the competitiveness improvement framework (CIF) for laboratories, in particular, Forensic Science Laboratories (FSLs). The cyclic nature of FSL processes allowed data collection for the purpose of identification of factors affecting FSL performance (cause factors). Flow charts were used to represent mathematical formulations for cause factor measurements and quantification of the baseline data on turnaround time (TAT), backlogs for case files (Bg), turnaround time in the supply chain (Tsc), and employee absenteeism (Ab). By quantifying the cause factors in addition to academic development coefficient (Ad) and complex longevity (Lc) for FSL employees, it was possible to establish the organizational design features requiring improvements. The relevance of cause factors to FSL stakeholders and means of improvement and sustainability were established. A detailed road map towards CIF was presented using D-MAIC methodology. The rated cause factors based on challenges in the FSL business environment were subjected to Pareto analysis to prioritize the challenges in order to improve FSLs’ competitiveness. The interrelationship between the three dimensions of competitiveness improvement (process, performance and planning) was presented in terms of the affected six cause factors. Also, the potential lean practices for improving competitiveness of FSL based on measured cause factors have been presented. This paper introduced methods and measures for improving operational competitiveness of laboratories. The CIF was finally presented in a form of a series of three flow charts summarizing all steps implemented in its development with inputs and cause factors involved.