期刊文献+

Assessment of Ballast Flying in the National Railway Network of Ethiopia

Assessment of Ballast Flying in the National Railway Network of Ethiopia
下载PDF
导出
摘要 One of the major problems in ballasted railroads is ballast flying, which is the projection of ballast particles from the at-rest position as the train passes over the track of a railway structure, mainly due to high speed. In this research, the possibility of railway ballast flying for the double track Addis-Adama section of the new Addis-Djibouti railway line is assessed by determining the major causes of ballast flying and applying Discrete Element Modeling (DEM) with the aid of Particle Flow Code (PFC3D) software. The analysis comprised of an impact load and ballast material behavior which were used to determine the vibrational speed of individual ballast particles. The governing result from the series of discrete element analyses performed by considering fouled ballast gradation with grain-size diameter of 22.4 mm gives rise to a ballast maximum vibrational speed of 0.014 m/s. Since the ballast vibrational speed for Addis Ababa-Adama line is less than 0.02 m/s that is recommended by the literature, no ballast flight is expected under the present traffic and ballast conditions. One of the major problems in ballasted railroads is ballast flying, which is the projection of ballast particles from the at-rest position as the train passes over the track of a railway structure, mainly due to high speed. In this research, the possibility of railway ballast flying for the double track Addis-Adama section of the new Addis-Djibouti railway line is assessed by determining the major causes of ballast flying and applying Discrete Element Modeling (DEM) with the aid of Particle Flow Code (PFC3D) software. The analysis comprised of an impact load and ballast material behavior which were used to determine the vibrational speed of individual ballast particles. The governing result from the series of discrete element analyses performed by considering fouled ballast gradation with grain-size diameter of 22.4 mm gives rise to a ballast maximum vibrational speed of 0.014 m/s. Since the ballast vibrational speed for Addis Ababa-Adama line is less than 0.02 m/s that is recommended by the literature, no ballast flight is expected under the present traffic and ballast conditions.
作者 Fikadu Mengistu Henok F. Gebregziabher Fikadu Mengistu;Henok F. Gebregziabher(Awash-Kombolcha-Haragebeya Railway Project, Ethiopian Railways Corporation, Addis Ababa, Ethiopia)
出处 《Engineering(科研)》 2021年第7期420-429,共10页 工程(英文)(1947-3931)
关键词 Railway Track Ballast Flying Discrete Element Modeling Ballast Vibrational Speed Particle Flow Code Railway Track Ballast Flying Discrete Element Modeling Ballast Vibrational Speed Particle Flow Code
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部