摘要
Solar collector is a thermal device that uses the heated air in the power generation and many engineering applications. The purpose of the present work is to study the performance and temperature distribution for the solar collector which uses heated air in solar chimney power generation that it consist of three parts, a turbine-generator unit which is used in the generation of electric energy, and cylindrical chimney is fixed vertically and finally a solar collector under the climatic conditions of Egypt-Aswan is studied. This site is specified as the hottest site because the nearest of this location from the Tropic of cancer. Experiments are performed in ten summer days of May and June 2015 with different solar radiations and clarity of the sky. Hourly values of global solar radiation and some meteorological data (temperature, pressure, velocity, etc.) for measuring days are obtained by measuring devices. Inlet and outlet temperatures of air from a solar collector and velocity at junction region. In this work, attempt has been made to present the effect of environmental factors such as ambient temperature, the clarity of the sky and solar radiation on the performance of solar collector. The temperature of the base and the cover of the solar collector, the variation of solar radiation, solar collector efficiency, heat transfer coefficient, the velocity at the junction region between the chimney base, the outlet of the solar collector and temperature distribution along the air heater are discussed. A prediction for the results of the solar collector were performed by using developed theoretical model was made by this study which is based on the previous works. The numerical study has used a commercial code CFX, ANSYS 16.1 to simulate the flow through the collector. The study show that the outlet air temperatures from the solar collector and the velocity at the junction are depending on the climate condition such as ambient temperature and solar radiation, the differences in air temperature at the solar collector ranging between 8° - 24°. It is concluded that the theoretical model is basically valid for the system under study, and theCFD simulation can be used conveniently to predict the performance of the system, the comparison between them and experimental result shows a good agreement.
Solar collector is a thermal device that uses the heated air in the power generation and many engineering applications. The purpose of the present work is to study the performance and temperature distribution for the solar collector which uses heated air in solar chimney power generation that it consist of three parts, a turbine-generator unit which is used in the generation of electric energy, and cylindrical chimney is fixed vertically and finally a solar collector under the climatic conditions of Egypt-Aswan is studied. This site is specified as the hottest site because the nearest of this location from the Tropic of cancer. Experiments are performed in ten summer days of May and June 2015 with different solar radiations and clarity of the sky. Hourly values of global solar radiation and some meteorological data (temperature, pressure, velocity, etc.) for measuring days are obtained by measuring devices. Inlet and outlet temperatures of air from a solar collector and velocity at junction region. In this work, attempt has been made to present the effect of environmental factors such as ambient temperature, the clarity of the sky and solar radiation on the performance of solar collector. The temperature of the base and the cover of the solar collector, the variation of solar radiation, solar collector efficiency, heat transfer coefficient, the velocity at the junction region between the chimney base, the outlet of the solar collector and temperature distribution along the air heater are discussed. A prediction for the results of the solar collector were performed by using developed theoretical model was made by this study which is based on the previous works. The numerical study has used a commercial code CFX, ANSYS 16.1 to simulate the flow through the collector. The study show that the outlet air temperatures from the solar collector and the velocity at the junction are depending on the climate condition such as ambient temperature and solar radiation, the differences in air temperature at the solar collector ranging between 8° - 24°. It is concluded that the theoretical model is basically valid for the system under study, and theCFD simulation can be used conveniently to predict the performance of the system, the comparison between them and experimental result shows a good agreement.
作者
Magdy Bassily Hanna
Tarek Abdel-Malak Mekhail
Omar Mohamed Dahab
Mohamed Fathy Cidek Esmail
Ahmed Rekaby Abdel-Rahman
Magdy Bassily Hanna;Tarek Abdel-Malak Mekhail;Omar Mohamed Dahab;Mohamed Fathy Cidek Esmail;Ahmed Rekaby Abdel-Rahman(Mechanical Power and Energy Department, Faculty of Engineering, Minia University, Minia, Egypt;Mechanical Power Department, Faculty of Energy Engineering, Aswan University, Aswan, Egypt;Mechanical Power Department, Faculty of Engineering, Aswan University, Aswan, Egypt)