摘要
S@C-Co-N nanoporous carbon co-doped with cobalt and nitrogen as the cathode of lithium-sulfur battery are prepared. The synthetic route is carried out via the carbonization of metal organic frameworks polyhedron ZIF-67, followed by the heat treatment with sulfur. The SEM images suggest that C-Co-N composite maintains almost the same size and polyhedron shape of ZIF-67. The XRD pattern confirms the existence of cobalt element. As cathode for lithium-sulfur battery, the S@C-Co-N composite delivers a reversible capacity of 916.6 mAh?g?1 at the initial cycle and 460.5 mAh?g?1 after 500 cycles at 0.5 C, with a capacity fading of 0.09% per cycle.
S@C-Co-N nanoporous carbon co-doped with cobalt and nitrogen as the cathode of lithium-sulfur battery are prepared. The synthetic route is carried out via the carbonization of metal organic frameworks polyhedron ZIF-67, followed by the heat treatment with sulfur. The SEM images suggest that C-Co-N composite maintains almost the same size and polyhedron shape of ZIF-67. The XRD pattern confirms the existence of cobalt element. As cathode for lithium-sulfur battery, the S@C-Co-N composite delivers a reversible capacity of 916.6 mAh?g?1 at the initial cycle and 460.5 mAh?g?1 after 500 cycles at 0.5 C, with a capacity fading of 0.09% per cycle.