摘要
A single diode model for a photovoltaic solar module is the most ideal and quick way of analyzing the module characteristics before implementing them in a solar plant. Solar modules manufacturers provide information for three critical points that are essential in I-V, P-V or P-I curves. In this study, we propose four separate simulation procedures to estimate the five-model parameters of an analogous single diode equivalent circuit by utilizing three cardinal points of the photovoltaic module I-V curve, described from experimental data using a solar simulator and manufacturer’s datasheet. The main objective is to extract and use the five unknown parameters of a single diode model to describe the photovoltaic system using I-V ad P-V plots under different environmental conditions. The most influential parameters that greatly alter the cardinal points defined at short circuit point (SCP), the maximum power point (MPP) and the open circuit point(OCP) are the ideality factor (</span><i><span style="font-family:Verdana;">n</span></i><span style="font-family:Verdana;">) and the diode saturation current (</span><i><span style="font-family:Verdana;">I<sub>o</sub></span></i><span style="font-family:Verdana;">). For a quick and fast convergence, we have determined the optimal ideality factor (</span><i><span style="font-family:Verdana;">n<sub>o</sub></span></i><span style="font-family:Verdana;">) and optimal saturation current (</span><i><span style="font-family:Verdana;">I<sub>oopt</sub></span></i><span style="font-family:Verdana;">) as the primary parameters by first assuming the optimal values of </span><i><span style="font-family:Verdana;">R<sub>sh</sub></span></i><span style="font-family:Verdana;">, </span><i><span style="font-family:Verdana;">R<sub>s</sub> </span></i><span style="font-family:Verdana;">and </span><i><span style="font-family:Verdana;">I<sub>ph</sub> </span></i><span style="font-family:Verdana;">at standard test conditions (STC). Further, we evaluated the effects of </span><i><span style="font-family:Verdana;">I<sub>ph</sub></span></i><span style="font-family:Verdana;">, </span><i><span style="font-family:Verdana;">R<sub>s</sub> </span></i><span style="font-family:Verdana;">and </span><i><span style="font-family:Verdana;">R<sub>sh</sub> </span></i><span style="font-family:Verdana;">on I-V and P-V curves by considering the values of </span><i><span style="font-family:Verdana;">n </span></i><span style="font-family:Verdana;">below </span><i><span style="font-family:Verdana;">n</span><sub><span style="font-family:Verdana;">o</span></sub></i><span style="font-family:Verdana;">. We have evaluated different iterative procedures of determining </span><i><span style="font-family:Verdana;">R<sub>sh</sub> </span></i><span style="font-family:Verdana;">and </span><i><span style="font-family:Verdana;">R<sub>s</sub> </span></i><span style="font-family:Verdana;">at open-circuit, short-circuit point and the maximum-power points. These procedures have been classified into four approaches that guarantees positive shunt and series resistance for </span><i><span style="font-family:Verdana;">n </span></i><span style="font-family:Verdana;">≤</span><i><span style="font-family:Verdana;"> n<sub>o</sub></span></i><span style="font-family:Verdana;">. These approaches have been categorized by deriving the saturation current as a dependent variable at each cardinal point with or without </span><i><span style="font-family:Verdana;">R<sub>s</sub> </span></i><span style="font-family:Verdana;">and </span><i><span style="font-family:Verdana;">R<sub>sh</sub> </span></i><span style="font-family:Verdana;">pair. The values obtained for the five parameters have been used to simulate the photovoltaic solar module characteristic curves with great precision at different air temperatures and irradiances, considering the effect of Nominal Operating Cell Temperature (NOCT).
A single diode model for a photovoltaic solar module is the most ideal and quick way of analyzing the module characteristics before implementing them in a solar plant. Solar modules manufacturers provide information for three critical points that are essential in I-V, P-V or P-I curves. In this study, we propose four separate simulation procedures to estimate the five-model parameters of an analogous single diode equivalent circuit by utilizing three cardinal points of the photovoltaic module I-V curve, described from experimental data using a solar simulator and manufacturer’s datasheet. The main objective is to extract and use the five unknown parameters of a single diode model to describe the photovoltaic system using I-V ad P-V plots under different environmental conditions. The most influential parameters that greatly alter the cardinal points defined at short circuit point (SCP), the maximum power point (MPP) and the open circuit point(OCP) are the ideality factor (</span><i><span style="font-family:Verdana;">n</span></i><span style="font-family:Verdana;">) and the diode saturation current (</span><i><span style="font-family:Verdana;">I<sub>o</sub></span></i><span style="font-family:Verdana;">). For a quick and fast convergence, we have determined the optimal ideality factor (</span><i><span style="font-family:Verdana;">n<sub>o</sub></span></i><span style="font-family:Verdana;">) and optimal saturation current (</span><i><span style="font-family:Verdana;">I<sub>oopt</sub></span></i><span style="font-family:Verdana;">) as the primary parameters by first assuming the optimal values of </span><i><span style="font-family:Verdana;">R<sub>sh</sub></span></i><span style="font-family:Verdana;">, </span><i><span style="font-family:Verdana;">R<sub>s</sub> </span></i><span style="font-family:Verdana;">and </span><i><span style="font-family:Verdana;">I<sub>ph</sub> </span></i><span style="font-family:Verdana;">at standard test conditions (STC). Further, we evaluated the effects of </span><i><span style="font-family:Verdana;">I<sub>ph</sub></span></i><span style="font-family:Verdana;">, </span><i><span style="font-family:Verdana;">R<sub>s</sub> </span></i><span style="font-family:Verdana;">and </span><i><span style="font-family:Verdana;">R<sub>sh</sub> </span></i><span style="font-family:Verdana;">on I-V and P-V curves by considering the values of </span><i><span style="font-family:Verdana;">n </span></i><span style="font-family:Verdana;">below </span><i><span style="font-family:Verdana;">n</span><sub><span style="font-family:Verdana;">o</span></sub></i><span style="font-family:Verdana;">. We have evaluated different iterative procedures of determining </span><i><span style="font-family:Verdana;">R<sub>sh</sub> </span></i><span style="font-family:Verdana;">and </span><i><span style="font-family:Verdana;">R<sub>s</sub> </span></i><span style="font-family:Verdana;">at open-circuit, short-circuit point and the maximum-power points. These procedures have been classified into four approaches that guarantees positive shunt and series resistance for </span><i><span style="font-family:Verdana;">n </span></i><span style="font-family:Verdana;">≤</span><i><span style="font-family:Verdana;"> n<sub>o</sub></span></i><span style="font-family:Verdana;">. These approaches have been categorized by deriving the saturation current as a dependent variable at each cardinal point with or without </span><i><span style="font-family:Verdana;">R<sub>s</sub> </span></i><span style="font-family:Verdana;">and </span><i><span style="font-family:Verdana;">R<sub>sh</sub> </span></i><span style="font-family:Verdana;">pair. The values obtained for the five parameters have been used to simulate the photovoltaic solar module characteristic curves with great precision at different air temperatures and irradiances, considering the effect of Nominal Operating Cell Temperature (NOCT).