期刊文献+

Management of Charging Load of Electric Vehicles for Optimal Capacity Utilisation of Distribution Transformers

Management of Charging Load of Electric Vehicles for Optimal Capacity Utilisation of Distribution Transformers
下载PDF
导出
摘要 A de-centralised load management technique exploiting the flexibility in the charging of Electric Vehicles (EVs) is presented. Two charging regimes are assumed. The Controlled Charging Regime (CCR) between 16:30 hours and 06:00 hours of the next day and the Uncontrolled Charging Regime (UCR) between 06:00 hours and 16:30 hours of the same day. During the CCR, the charging of EVs is coordinated and controlled by means of a wireless two-way communication link between EV Smart Charge Controllers (EVSCCs) at EV owners’ premises and the EV Load Controller (EVLC) at the local LV distribution substation. The EVLC sorts the EVs batteries in ascending order of their states of charge (SoC) and sends command signals for charging to as many EVs as the transformer could allow at that interval based on the condition of the transformer as analysed by the Distribution Transformer Monitor (DTM). A real and typical urban LV area distribution network in Great Britain (GB) is used as the case study. The technique is applied on</span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:"">the LV area when its transformer is carrying the future load demand of the area on a typical winter weekday in the year 2050. To achieve the load management, load demand of the LV area network is decomposed into Non-EV <span>load and EV load. The load on the transformer is managed by varying the EV load in an optimisation objective function which maximises the capacity uti</span>lisation of the transformer subject to operational constraints and non-disruption of daily trips of EV owners. Results show that with the proposed load management technique, LV distribution networks could accommodate high uptake of EVs without compromising the useful normal life expectancy of distribution transformers before the need for capacity reinforcement. A de-centralised load management technique exploiting the flexibility in the charging of Electric Vehicles (EVs) is presented. Two charging regimes are assumed. The Controlled Charging Regime (CCR) between 16:30 hours and 06:00 hours of the next day and the Uncontrolled Charging Regime (UCR) between 06:00 hours and 16:30 hours of the same day. During the CCR, the charging of EVs is coordinated and controlled by means of a wireless two-way communication link between EV Smart Charge Controllers (EVSCCs) at EV owners’ premises and the EV Load Controller (EVLC) at the local LV distribution substation. The EVLC sorts the EVs batteries in ascending order of their states of charge (SoC) and sends command signals for charging to as many EVs as the transformer could allow at that interval based on the condition of the transformer as analysed by the Distribution Transformer Monitor (DTM). A real and typical urban LV area distribution network in Great Britain (GB) is used as the case study. The technique is applied on</span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:"">the LV area when its transformer is carrying the future load demand of the area on a typical winter weekday in the year 2050. To achieve the load management, load demand of the LV area network is decomposed into Non-EV <span>load and EV load. The load on the transformer is managed by varying the EV load in an optimisation objective function which maximises the capacity uti</span>lisation of the transformer subject to operational constraints and non-disruption of daily trips of EV owners. Results show that with the proposed load management technique, LV distribution networks could accommodate high uptake of EVs without compromising the useful normal life expectancy of distribution transformers before the need for capacity reinforcement.
作者 Rilwan Olaolu Oliyide Liana M. Cipcigan Rilwan Olaolu Oliyide;Liana M. Cipcigan(Department of Electrical/Electronic Engineering, Moshood Abiola Polytechnic, Abeokuta, Nigeria;Institute of Energy, School of Engineering, Cardiff University, Cardiff, UK)
出处 《Journal of Power and Energy Engineering》 2021年第11期60-79,共20页 电力能源(英文)
关键词 Electric Vehicles Load Management EV Charge Controller EV Load Controller Distribution Transformer Monitor Electric Vehicles Load Management EV Charge Controller EV Load Controller Distribution Transformer Monitor
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部