期刊文献+

Reliability Analysis of Wind Energy Generation System Using Stochastic Method

Reliability Analysis of Wind Energy Generation System Using Stochastic Method
下载PDF
导出
摘要 Operators of renewable energy systems (RESs) must always manage uncertainty to some extent to ensure the reliability and the security of the electric power supply source. The guiding principle in this regard is to ensure service reliability and quality by balancing load variations with the variable renewable energy (VRE) sources. If the power generated by these VRE sources is not properly managed in conjunction with the varying load, the power grid may fail to achieve the required balance. To ensure its reliable operation, reliability analysis is vital for wind energy generation system (WEGS). This paper evaluated and assessed the reliability of WEGS and a proposed varying load by first using a stochastic approach to model the WEGS and the proposed varying load after which power generation indices were used to evaluate and assess the performance of the model. The WEGS and the varying load were modelled separately after which the two were combined into one model. Full availability, partial availability, the expected energy not supplied (EENS) or loss of energy expectation (LOEE), the mean or average instantaneous electric power generation and mean instantaneous generation deficiency were the indices used for the evaluation of the WEGS. The results indicated that the electric power generation will meet the power demand during most of the transition states of the WEGS with the expectation that the variation in the load will not be at fast pace and in large quantum. Operators of renewable energy systems (RESs) must always manage uncertainty to some extent to ensure the reliability and the security of the electric power supply source. The guiding principle in this regard is to ensure service reliability and quality by balancing load variations with the variable renewable energy (VRE) sources. If the power generated by these VRE sources is not properly managed in conjunction with the varying load, the power grid may fail to achieve the required balance. To ensure its reliable operation, reliability analysis is vital for wind energy generation system (WEGS). This paper evaluated and assessed the reliability of WEGS and a proposed varying load by first using a stochastic approach to model the WEGS and the proposed varying load after which power generation indices were used to evaluate and assess the performance of the model. The WEGS and the varying load were modelled separately after which the two were combined into one model. Full availability, partial availability, the expected energy not supplied (EENS) or loss of energy expectation (LOEE), the mean or average instantaneous electric power generation and mean instantaneous generation deficiency were the indices used for the evaluation of the WEGS. The results indicated that the electric power generation will meet the power demand during most of the transition states of the WEGS with the expectation that the variation in the load will not be at fast pace and in large quantum.
作者 Godwin Diamenu Joseph Cudjoe Attachie Christian Kwaku Amuzuvi Godwin Diamenu;Joseph Cudjoe Attachie;Christian Kwaku Amuzuvi(Electrical and Electronic Engineering Department, University of Mines and Technology (UMaT), Tarkwa, Ghana;Renewable Energy Engineering Department, University of Mines and Technology (UMaT), Tarkwa, Ghana)
出处 《Journal of Power and Energy Engineering》 2022年第8期26-44,共19页 电力能源(英文)
关键词 Renewable Energy STOCHASTIC RELIABILITY AVAILABILITY Transition Rate Transition State Renewable Energy Stochastic Reliability Availability Transition Rate Transition State
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部