期刊文献+

Thermal Activation of Asymetrical Composites for Vibration Control

Thermal Activation of Asymetrical Composites for Vibration Control
下载PDF
导出
摘要 The CBCM (Controlled Behaviour Composite Material) is a thermal active composite, which has been developed for morphing applications. The thermal activation is made by a source of heating generated within the composite structure. The coupling between the induced thermal field and the thermomechanical properties of the various components of the composite structure leads to the change of the structure shape. The heat source is generated by Joule effect, Carbon yarns inserted in the composite, are connected to a power supply. The application field of CBCM technology is the domain of shape modification and active assembly. The objective of this work is to illustrate the capabilities of CBCM in the domain of vibration control. We will study several reference plates with different constitution. The influences of these different constitutions, of the CBCM effect and the loss of stiffness for the matrix will be highlighted, for two boundary conditions, free/free and embedded/embedded. The CBCM (Controlled Behaviour Composite Material) is a thermal active composite, which has been developed for morphing applications. The thermal activation is made by a source of heating generated within the composite structure. The coupling between the induced thermal field and the thermomechanical properties of the various components of the composite structure leads to the change of the structure shape. The heat source is generated by Joule effect, Carbon yarns inserted in the composite, are connected to a power supply. The application field of CBCM technology is the domain of shape modification and active assembly. The objective of this work is to illustrate the capabilities of CBCM in the domain of vibration control. We will study several reference plates with different constitution. The influences of these different constitutions, of the CBCM effect and the loss of stiffness for the matrix will be highlighted, for two boundary conditions, free/free and embedded/embedded.
出处 《Modern Mechanical Engineering》 2013年第3期1-8,共8页 现代机械工程(英文)
关键词 COMPOSITE MATERIAL VIBRATION Control SMART Materials ACTIVE Structure Composite Material Vibration Control Smart Materials Active Structure
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部