摘要
This paper presents result of an experimental investigation carried out to evaluate effects of replacing aggregates (coarse & fine) with that of Slag (Crystallized & Granular) which is an industrial waste by-product on concrete strength properties by using Taguchi’s approach of optimization. Whole study was done in three phases, in the first phase natural coarse aggregate was replaced by crystallized slag coarse aggregate keeping fine aggregate (natural sand) common in all the mixes, in the second phase fine aggregate (natural sand) was replaced by granular slag keeping natural coarse aggregate common in all the mixes and in the third phase both the aggregates were replaced by crystallized & granular aggregates. The study concluded that compressive strength of concrete improved almost all the % replacements of normal crushed coarse aggregate with crystallized slag by 5% to 7%. In case of replacements of fine aggregate and both type of aggregates, the strength improvements were notably noticed at 30% to 50% replacement level. It could also be said that full substitution of slag aggregate with normal crushed coarse aggregate improved the flexure and split tensile strength by 6% to 8% at all replacements and in case of replacing fine aggregate & both the aggregates( Fine & coarse) with slag, the strength improvement was at 30% to 50% replacements. It is evident from the investigation that Taguchi approach for optimization helped in indentifying the factors affecting the final outcomes. Based on the overall observations, it could be recommended that Slag could be effectively utilized as coarse & fine aggregates in all concrete applications.
This paper presents result of an experimental investigation carried out to evaluate effects of replacing aggregates (coarse & fine) with that of Slag (Crystallized & Granular) which is an industrial waste by-product on concrete strength properties by using Taguchi’s approach of optimization. Whole study was done in three phases, in the first phase natural coarse aggregate was replaced by crystallized slag coarse aggregate keeping fine aggregate (natural sand) common in all the mixes, in the second phase fine aggregate (natural sand) was replaced by granular slag keeping natural coarse aggregate common in all the mixes and in the third phase both the aggregates were replaced by crystallized & granular aggregates. The study concluded that compressive strength of concrete improved almost all the % replacements of normal crushed coarse aggregate with crystallized slag by 5% to 7%. In case of replacements of fine aggregate and both type of aggregates, the strength improvements were notably noticed at 30% to 50% replacement level. It could also be said that full substitution of slag aggregate with normal crushed coarse aggregate improved the flexure and split tensile strength by 6% to 8% at all replacements and in case of replacing fine aggregate & both the aggregates( Fine & coarse) with slag, the strength improvement was at 30% to 50% replacements. It is evident from the investigation that Taguchi approach for optimization helped in indentifying the factors affecting the final outcomes. Based on the overall observations, it could be recommended that Slag could be effectively utilized as coarse & fine aggregates in all concrete applications.