期刊文献+

Noise Reduction in Pavement Made of Rubberized Bituminous Top Layer 被引量:4

Noise Reduction in Pavement Made of Rubberized Bituminous Top Layer
下载PDF
导出
摘要 In Greece more than 60,000 tn End of Life Tires are stockpiled every year often uncontrollable, causing severe environmental and other socio-economic negative impacts. Studies up to date are focused mainly on mechanical and physical characteristics of rubberized mixtures (based on cement, asphalt or soil) in which tire rubber is used either as alternative to natural aggregates or as additive. However, effect of tire rubber on noise reduction in rubberized bituminous layers, which is the main topic of present paper, has not been widely studied. In particular, this research paper is dealing with a sustainable use of tire rubber in asphalt pavement, leading to its generated noise reduction. An experimental pilot application has been conducted in the frame of a European Research Project, which has been implemented in a heavy traffic road section, cited outside Lamia city of Greece, (Vasilikon Street). The upper surface layer of the pavement has been made of rubberized bituminous mixture, produced by the wet process. Rheological characteristics of rubberized bitumen as well as basic properties of the implemented, rubberized bituminous mixture are presented. Moreover, measurements of noise level, deriving from vehicles’ motion, under operational conditions took place at the road section right after its implementation as well as after 8 months of its operation, while all data are presented in details. Results of the measurements on conventional and modified pavement sections are compared, certifying that rubberized asphalt layers can be not only environmentally friendly—since a category of solid wastes (worn automobile tires) is utilized—but also, addition of tire rubber particles in bituminous binder provides up to 3dB noise reducing bituminous mixtures and pavements, noise reduction that remains even after 8 months of road section’s operation. In Greece more than 60,000 tn End of Life Tires are stockpiled every year often uncontrollable, causing severe environmental and other socio-economic negative impacts. Studies up to date are focused mainly on mechanical and physical characteristics of rubberized mixtures (based on cement, asphalt or soil) in which tire rubber is used either as alternative to natural aggregates or as additive. However, effect of tire rubber on noise reduction in rubberized bituminous layers, which is the main topic of present paper, has not been widely studied. In particular, this research paper is dealing with a sustainable use of tire rubber in asphalt pavement, leading to its generated noise reduction. An experimental pilot application has been conducted in the frame of a European Research Project, which has been implemented in a heavy traffic road section, cited outside Lamia city of Greece, (Vasilikon Street). The upper surface layer of the pavement has been made of rubberized bituminous mixture, produced by the wet process. Rheological characteristics of rubberized bitumen as well as basic properties of the implemented, rubberized bituminous mixture are presented. Moreover, measurements of noise level, deriving from vehicles’ motion, under operational conditions took place at the road section right after its implementation as well as after 8 months of its operation, while all data are presented in details. Results of the measurements on conventional and modified pavement sections are compared, certifying that rubberized asphalt layers can be not only environmentally friendly—since a category of solid wastes (worn automobile tires) is utilized—but also, addition of tire rubber particles in bituminous binder provides up to 3dB noise reducing bituminous mixtures and pavements, noise reduction that remains even after 8 months of road section’s operation.
出处 《Open Journal of Civil Engineering》 2014年第3期198-208,共11页 土木工程期刊(英文)
关键词 END of Life-Tires Rubberized Bituminous MIXTURES Noise PAVEMENT TRAFFIC WASTE Management End of Life-Tires Rubberized Bituminous Mixtures Noise Pavement Traffic Waste Management
  • 相关文献

同被引文献111

引证文献4

二级引证文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部