期刊文献+

Easy-to-Use Look-Up Hydrologic Design Charts of a Soak-Away Rain Garden in Singapore

Easy-to-Use Look-Up Hydrologic Design Charts of a Soak-Away Rain Garden in Singapore
下载PDF
导出
摘要 As catchments become urbanized due to population growth the impervious surfaces created by buildings and pavements in the expense of permeable soil, depressions, and vegetation cause rainwater to flow rapidly over the landscape. To mitigate the adverse impact of urbanization such as increased flooding and depleted groundwater recharge, around the world, several best management practices, in other words, green infrastructures have been practised, and soak-away rain garden is one of them. However, to have a rapid assessment of soak-away rain gardens on a range of potential hydrologic conditions (e.g., size of the soak-away rain garden, saturated hydraulic conductivity of the in-situ soil, and saturated hydraulic conductivity of the filter media), hydrologic design guidelines or design charts of soak-away rain gardens that are specific for local conditions are not currently available for many regions including Singapore. Thus, in this paper, with a design hyetograph of 3-month average rainfall intensities of Singapore, hydrologic design charts, especially, design charts on overflow volume (as a % of total runoff volume) of soak-away rain gardens are established for a range of potential hydrologic conditions by developing a mathematical model based on Richard’s equation using COMSOL Multiphysics, a finite element analysis and solver software package for various physics and engineering applications. These easy-to-use look-up hydrologic design charts will be of great utility for local managers in the design of soak-away rain gardens. As catchments become urbanized due to population growth the impervious surfaces created by buildings and pavements in the expense of permeable soil, depressions, and vegetation cause rainwater to flow rapidly over the landscape. To mitigate the adverse impact of urbanization such as increased flooding and depleted groundwater recharge, around the world, several best management practices, in other words, green infrastructures have been practised, and soak-away rain garden is one of them. However, to have a rapid assessment of soak-away rain gardens on a range of potential hydrologic conditions (e.g., size of the soak-away rain garden, saturated hydraulic conductivity of the in-situ soil, and saturated hydraulic conductivity of the filter media), hydrologic design guidelines or design charts of soak-away rain gardens that are specific for local conditions are not currently available for many regions including Singapore. Thus, in this paper, with a design hyetograph of 3-month average rainfall intensities of Singapore, hydrologic design charts, especially, design charts on overflow volume (as a % of total runoff volume) of soak-away rain gardens are established for a range of potential hydrologic conditions by developing a mathematical model based on Richard’s equation using COMSOL Multiphysics, a finite element analysis and solver software package for various physics and engineering applications. These easy-to-use look-up hydrologic design charts will be of great utility for local managers in the design of soak-away rain gardens.
出处 《Open Journal of Civil Engineering》 2015年第3期269-280,共12页 土木工程期刊(英文)
关键词 COMSOL MULTIPHYSICS Soak-Away RAIN GARDEN Hydrologic Design Charts OVERFLOW Volume COMSOL Multiphysics Soak-Away Rain Garden Hydrologic Design Charts Overflow Volume
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部