摘要
The perceiving local site effects on strong ground motion are particularly important for the mitigation of earthquake disasters as well as future earthquake resistant design. The primary objective of this study is to investigate seismic behavior of building tube structure system with respect to dense soil-structure interaction (sand dense and very hard clay soil with a thickness greater than 30 m). For this purpose, the studied building in this paper is placed over two other different modeled soil types and results of seismic behavior of building for three soil types are compared with each other. Through response spectrum analyses, influence of different sub-soils (dense and loose soil) was determined on seismic behavior of 40-storey building reinforced concrete (RC) with tube in tube structure system and performance of each model was assessed in terms of shear lag behavior, overall and critical (maximum) story drifts. Results illustrate that loose soils amplify seismic waves and increase building drifts and shear lag behavior.
The perceiving local site effects on strong ground motion are particularly important for the mitigation of earthquake disasters as well as future earthquake resistant design. The primary objective of this study is to investigate seismic behavior of building tube structure system with respect to dense soil-structure interaction (sand dense and very hard clay soil with a thickness greater than 30 m). For this purpose, the studied building in this paper is placed over two other different modeled soil types and results of seismic behavior of building for three soil types are compared with each other. Through response spectrum analyses, influence of different sub-soils (dense and loose soil) was determined on seismic behavior of 40-storey building reinforced concrete (RC) with tube in tube structure system and performance of each model was assessed in terms of shear lag behavior, overall and critical (maximum) story drifts. Results illustrate that loose soils amplify seismic waves and increase building drifts and shear lag behavior.