摘要
Lots of researches?have shown that the optimization of building envelope reduces building energy consumption during its lifecycle. Due to the uncertainty of the relationship between individual design parameters and building performance, the extent of impact cannot be well-understood. Therefore, it is essential to evaluate the impact extent for different design parameters and identify the one (s) that impact (s) more to the building performance and hence focus so as to improve building performance efficiently. In the present research, main design parameters that affect the building performance are selected to analyse the extent of the impact. Material quantities are extracted directly from the Building Information Modelling (BIM) model so as to calculate the embodied energy in material. Moreover, simulation of energy consumption is run for different scenarios during operation stage. Energy embodied in typical construction materials are calculated for each scenario accordingly. Finally, sensitivity analysis is applied to find the extent of impact on life cycle energy of building for the selected design parameters in terms of both embodied energy (EE) and operational energy (OE). A case study of a manufactory plant is carried out to investigate the impact of the selected design parameters.
Lots of researches?have shown that the optimization of building envelope reduces building energy consumption during its lifecycle. Due to the uncertainty of the relationship between individual design parameters and building performance, the extent of impact cannot be well-understood. Therefore, it is essential to evaluate the impact extent for different design parameters and identify the one (s) that impact (s) more to the building performance and hence focus so as to improve building performance efficiently. In the present research, main design parameters that affect the building performance are selected to analyse the extent of the impact. Material quantities are extracted directly from the Building Information Modelling (BIM) model so as to calculate the embodied energy in material. Moreover, simulation of energy consumption is run for different scenarios during operation stage. Energy embodied in typical construction materials are calculated for each scenario accordingly. Finally, sensitivity analysis is applied to find the extent of impact on life cycle energy of building for the selected design parameters in terms of both embodied energy (EE) and operational energy (OE). A case study of a manufactory plant is carried out to investigate the impact of the selected design parameters.