期刊文献+

Virtual Principle for Determination Initial Displacements of Reinforced Concrete and Prestressed Concrete (Overtop) Members

Virtual Principle for Determination Initial Displacements of Reinforced Concrete and Prestressed Concrete (Overtop) Members
下载PDF
导出
摘要 Theoretical approach with analytical and numerical procedure for determination initial displacement of a reinforced and prestressed concrete members, simple and cantilever beams, loaded by axial forces and bending moments is <span style="font-family:Verdana;">proposed. It is based on the principle of minimum potential energy with</span><span style="font-family:Verdana;"> equality of internal and external forces. The equations for strain internal energy have been derived, including compressed and tensile concrete and reinforce</span><span style="font-family:Verdana;">ment. The energy equations of the external forces with axial flexural dis</span><span style="font-family:Verdana;">placement effects have been derived from the assumed sinusoidal curve. The trapezoid rule is applied to integrate the segment strain energy. The proposed method uses a non</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">linear stress-strain curve for the concrete and bilinear elastic-plastic relationship for reinforcement;equilibrium conditions at a sectional level to generate the strain energies along the beam. At the end of this article are shown three specific numerical examples with comparative, experimental (two tests)</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">results with the excellent agreement and one calculation result with a great disagreement, by obtaining results of virtual principle method.</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">With this method is avoiding the adoption of an unsure (EJ), as in the case of underestimating or overestimate initial flexural rigidity.</span></span></span> Theoretical approach with analytical and numerical procedure for determination initial displacement of a reinforced and prestressed concrete members, simple and cantilever beams, loaded by axial forces and bending moments is <span style="font-family:Verdana;">proposed. It is based on the principle of minimum potential energy with</span><span style="font-family:Verdana;"> equality of internal and external forces. The equations for strain internal energy have been derived, including compressed and tensile concrete and reinforce</span><span style="font-family:Verdana;">ment. The energy equations of the external forces with axial flexural dis</span><span style="font-family:Verdana;">placement effects have been derived from the assumed sinusoidal curve. The trapezoid rule is applied to integrate the segment strain energy. The proposed method uses a non</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">linear stress-strain curve for the concrete and bilinear elastic-plastic relationship for reinforcement;equilibrium conditions at a sectional level to generate the strain energies along the beam. At the end of this article are shown three specific numerical examples with comparative, experimental (two tests)</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">results with the excellent agreement and one calculation result with a great disagreement, by obtaining results of virtual principle method.</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">With this method is avoiding the adoption of an unsure (EJ), as in the case of underestimating or overestimate initial flexural rigidity.</span></span></span>
作者 Mirko Balabušić Mirko Balabušić(Independent Designer of Structure, Hercg Novi, Montenegro)
出处 《Open Journal of Civil Engineering》 2021年第2期235-253,共19页 土木工程期刊(英文)
关键词 Virtual Principle Strain and External Energy Reinforced and Prestresed Beam Virtual Principle Strain and External Energy Reinforced and Prestresed Beam
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部