摘要
The sustainability of a city depends on the effective and efficient management of its solid waste. Waste recycling channels mainly process glass bottles for direct reuse. Some of these sectors carry out the crushing and grinding of end-of-life glass waste for use in civil engineering without the identification in terms of building materials being clearly established. The present study therefore aims to determine the physical and chemical characteristics of glass powders and sands resulting from the crushing and grinding of glass waste from Grand Lomé in Togo in order to consider their granular potential. Samples of sand and glass powder from the crushing and grinding of white, brown and green glass were subjected to characterization tests in the laboratory followed by analysis of the granular parameters and their modeling by Weibull’s law. The results show that the powder and the glass sand contain a high proportion of silica (SiO<sub>2</sub>) ranging from 69.11% to 70.18% and a low proportion of alumina (Al<sub>2</sub>O<sub>3</sub>) (less than 0.07) and iron (Fe<sub>2</sub>O<sub>3</sub>) (lower to 1.09). These three materials have tight and male graded grain sizes (Cu Cc omogeneous (k < 2.89). The absolute density (2 dab < 3) and the fineness modulus (Mf 2.1) make these materials probable aggregates for plaster and coating mortars. Nevertheless, an in-depth study will be made to determine a suitable formula.
The sustainability of a city depends on the effective and efficient management of its solid waste. Waste recycling channels mainly process glass bottles for direct reuse. Some of these sectors carry out the crushing and grinding of end-of-life glass waste for use in civil engineering without the identification in terms of building materials being clearly established. The present study therefore aims to determine the physical and chemical characteristics of glass powders and sands resulting from the crushing and grinding of glass waste from Grand Lomé in Togo in order to consider their granular potential. Samples of sand and glass powder from the crushing and grinding of white, brown and green glass were subjected to characterization tests in the laboratory followed by analysis of the granular parameters and their modeling by Weibull’s law. The results show that the powder and the glass sand contain a high proportion of silica (SiO<sub>2</sub>) ranging from 69.11% to 70.18% and a low proportion of alumina (Al<sub>2</sub>O<sub>3</sub>) (less than 0.07) and iron (Fe<sub>2</sub>O<sub>3</sub>) (lower to 1.09). These three materials have tight and male graded grain sizes (Cu Cc omogeneous (k < 2.89). The absolute density (2 dab < 3) and the fineness modulus (Mf 2.1) make these materials probable aggregates for plaster and coating mortars. Nevertheless, an in-depth study will be made to determine a suitable formula.
作者
Apedjinou Dodji Kplolanyo
Samah Essoavama Ouro-Djobo
Amey Kossi Bollanigni
Gbafa Kodjovi Senanou
Apedjinou Dodji Kplolanyo;Samah Essoavama Ouro-Djobo;Amey Kossi Bollanigni;Gbafa Kodjovi Senanou(Équipe de Recherche en Mécanique (ERM), Ecole Nationale Supérieure d’Ingénieurs de l’Université de Lomé, Lomé, Togo;Centre Régional de Formation pour l’Entretien Routier (Togo) (CERFER), Lomé, Togo;Equipe de Recherche et Développement de l’Institut FORMATEC, Lomé, Togo)