摘要
PCMs (Phase Change Materials) can be integrated into building envelopes to decrease the building energy consumption, refine the indoor thermal comfort, shift and reduce the peak electricity load due to its relatively large latent heat. In this study, influence of the PCM layer location on the multilayer wall thermal performance is numerically researched in four walls under the climate conditions of Chengdu, China. The results only shows when the phase change of PCM occurs;its latent thermal storage performance can be played and have the significant influence on wall thermal performance. Due to phase change of PCM occurs, the fluctuation amplitudes of inner surface temperature and heat flow are reduced obviously;the temperature peak value is delayed in the phase-change occurred periods. In addition, the PCM layer can reduce inner surface heat flow, especially in summer and transition season, which is in the phase-change occurred periods. The average annual heat flow can be reduced by 8.5% - 11.8%. And when the PCM layer is closer to the wall internal side, the influence of the PCM layer location on the multilayer wall thermal performance is more significantly.
PCMs (Phase Change Materials) can be integrated into building envelopes to decrease the building energy consumption, refine the indoor thermal comfort, shift and reduce the peak electricity load due to its relatively large latent heat. In this study, influence of the PCM layer location on the multilayer wall thermal performance is numerically researched in four walls under the climate conditions of Chengdu, China. The results only shows when the phase change of PCM occurs;its latent thermal storage performance can be played and have the significant influence on wall thermal performance. Due to phase change of PCM occurs, the fluctuation amplitudes of inner surface temperature and heat flow are reduced obviously;the temperature peak value is delayed in the phase-change occurred periods. In addition, the PCM layer can reduce inner surface heat flow, especially in summer and transition season, which is in the phase-change occurred periods. The average annual heat flow can be reduced by 8.5% - 11.8%. And when the PCM layer is closer to the wall internal side, the influence of the PCM layer location on the multilayer wall thermal performance is more significantly.