期刊文献+

Thermodynamic Analysis of the Performance of a Single-Effect Absorption Refrigeration System Using the Ammonia/Sodium Thiocyanate Couple

Thermodynamic Analysis of the Performance of a Single-Effect Absorption Refrigeration System Using the Ammonia/Sodium Thiocyanate Couple
下载PDF
导出
摘要 This paper aims at presenting analysis of the thermodynamic of the performance of an absorption refrigeration system of the single-effect ammonia/sodium thiocyanate couple. Since the generator is the starting point for the operation of system, one of the most important point to be addressed in this work is to determine the generator’s temperatures at which the system can accept the best quantities and qualities of energy. A mathematical model has been developed to study the performance of the system. Equations obtained from the thermodynamic properties of the ammonia/sodium thiocyanate couple were implemented in Matlab. The analysis consists of determining the effects of the generator’s temperature on the energy performance of the system. The computerized performance parameters are the coefficient of performance and the energy efficiency. Results indicate that the coefficient of performance increases with the temperature of the generator. Moreover, these remarks are not observed on the exergetic efficiency, because the latter increases until its maximum value 0.43, in order to decrease until its final value 0.35. In addition, the maximum value of the coefficient of performance tends towards 0.7 with increasing generator temperature. The system admits better operation when the generator temperatures are between 80°C and 90°C. The determination of this temperature interval by simulation can be use as a variable setting point in controlling the real system. This paper aims at presenting analysis of the thermodynamic of the performance of an absorption refrigeration system of the single-effect ammonia/sodium thiocyanate couple. Since the generator is the starting point for the operation of system, one of the most important point to be addressed in this work is to determine the generator’s temperatures at which the system can accept the best quantities and qualities of energy. A mathematical model has been developed to study the performance of the system. Equations obtained from the thermodynamic properties of the ammonia/sodium thiocyanate couple were implemented in Matlab. The analysis consists of determining the effects of the generator’s temperature on the energy performance of the system. The computerized performance parameters are the coefficient of performance and the energy efficiency. Results indicate that the coefficient of performance increases with the temperature of the generator. Moreover, these remarks are not observed on the exergetic efficiency, because the latter increases until its maximum value 0.43, in order to decrease until its final value 0.35. In addition, the maximum value of the coefficient of performance tends towards 0.7 with increasing generator temperature. The system admits better operation when the generator temperatures are between 80°C and 90°C. The determination of this temperature interval by simulation can be use as a variable setting point in controlling the real system.
出处 《Open Journal of Energy Efficiency》 2020年第1期53-63,共11页 能源效率(英文)
关键词 Energy EXERGY Ammonia/Sodium THIOCYANATE Single Effect Energy Exergy Ammonia/Sodium Thiocyanate Single Effect
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部