期刊文献+

Temperature-Irradiance Matrix and Determination of Temperature Coefficients of a Monocrystalline PV Module

Temperature-Irradiance Matrix and Determination of Temperature Coefficients of a Monocrystalline PV Module
下载PDF
导出
摘要 Photovoltaic (PV) modules performance testing and energy rating as described in IEC 61853-1 standard depend on electrical performance parameters (short-circuit current, open-circuit voltage, maximum-power) of PV modules as a function of temperature and irradiance. In this work, in order to precisely determine the effects of temperature on the electrical parameters of a monocrystalline PV module, the temperature controlled, xenon light based solar simulator system with irradiance attenuating masks was used. This solar simulator, according to the IEC 60904-9 standard in terms of spectral match, spatial non-uniformity and temporal instability has A+A+A+ classes which are two times better than the standard requirements for a solar simulator to be used in PV module measurements. Moreover, the thermal chamber used in this work is a closed type chamber with fast opening door for not allowing the distortion of temperature uniformity over the surface of PV modules under test. Within about 2 m × 2 m area within 15°C to 75°C temperature interval, the temperature uniformity obtained for this system is less than 1.0°C which is almost two times better than the IEC 60891 standard requirements (±2.0°C). The temperature and irradiance dependent measurements of the electrical performance parameters of a mono-crystalline PV module at various irradiance levels and the evaluation of its temperature coefficients [α (% °C<sup>-</sup><sup>1</sup>), β (% °C<sup>-</sup><sup>1</sup>) and δ (% °C<sup>-</sup><sup>1</sup>)] were done by implementing the interpolation method described in IEC 60891 standard. Photovoltaic (PV) modules performance testing and energy rating as described in IEC 61853-1 standard depend on electrical performance parameters (short-circuit current, open-circuit voltage, maximum-power) of PV modules as a function of temperature and irradiance. In this work, in order to precisely determine the effects of temperature on the electrical parameters of a monocrystalline PV module, the temperature controlled, xenon light based solar simulator system with irradiance attenuating masks was used. This solar simulator, according to the IEC 60904-9 standard in terms of spectral match, spatial non-uniformity and temporal instability has A+A+A+ classes which are two times better than the standard requirements for a solar simulator to be used in PV module measurements. Moreover, the thermal chamber used in this work is a closed type chamber with fast opening door for not allowing the distortion of temperature uniformity over the surface of PV modules under test. Within about 2 m × 2 m area within 15°C to 75°C temperature interval, the temperature uniformity obtained for this system is less than 1.0°C which is almost two times better than the IEC 60891 standard requirements (±2.0°C). The temperature and irradiance dependent measurements of the electrical performance parameters of a mono-crystalline PV module at various irradiance levels and the evaluation of its temperature coefficients [α (% °C<sup>-</sup><sup>1</sup>), β (% °C<sup>-</sup><sup>1</sup>) and δ (% °C<sup>-</sup><sup>1</sup>)] were done by implementing the interpolation method described in IEC 60891 standard.
作者 Bazkir Ozcan Meric Seval Bazkir Ozcan;Meric Seval(National Metrology Institute (TUBITAK-UME), Kocaeli, Türkiye)
出处 《Open Journal of Energy Efficiency》 2022年第3期108-121,共14页 能源效率(英文)
关键词 PHOTOVOLTAIC Temperature Coefficient LINEARITY Energy Rating Photovoltaic Temperature Coefficient Linearity Energy Rating
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部