摘要
This paper describes the design and simulation by High Frequency Structure Simulator (HFSS) of a probe-fed Planar Inverted-F Antenna (PIFA) for the Ultra Wide Band (UWB) personal area networks. The slim antenna presents a height of 2 mm and a bandwidth of more than 766 MHz. This bandwidth was improved by etching a U-slot in the antenna patch. The bandwidth offered then by the antenna is 839 MHz around the resonant frequency of 9 GHz. The improvement of bandwidth was accompanied by decreasing in gain and radiation efficiency. The simulation allowed the characterization of the designed antenna and the computing of different antenna parameters like S11 parameter, resonant frequency, bandwidth, radiation efficiency, gain and diagram pattern. The results are very interesting and respect the Federal Communications Commission (FCC) requirements.
This paper describes the design and simulation by High Frequency Structure Simulator (HFSS) of a probe-fed Planar Inverted-F Antenna (PIFA) for the Ultra Wide Band (UWB) personal area networks. The slim antenna presents a height of 2 mm and a bandwidth of more than 766 MHz. This bandwidth was improved by etching a U-slot in the antenna patch. The bandwidth offered then by the antenna is 839 MHz around the resonant frequency of 9 GHz. The improvement of bandwidth was accompanied by decreasing in gain and radiation efficiency. The simulation allowed the characterization of the designed antenna and the computing of different antenna parameters like S11 parameter, resonant frequency, bandwidth, radiation efficiency, gain and diagram pattern. The results are very interesting and respect the Federal Communications Commission (FCC) requirements.